国别贸易
投资环境报告
2014
汽车制造业分册
中华人民共和国商务部
编委会

名誉主编 钟 山 王新奎
主编 周晓燕
副主编 宋和平 刘丹阳 周大霖 罗 津 冯 军
编 委 李 哲 苏旭霞 郝 伟 梁艳芬 韩 勇 梁 杰
顾 宇 李增力 庄 岩 张金定 王 旭 张 斌
裴文利 刘林林 陈文林 梁晓光 李 璐 汤晓东
董 雪 郭 舟 王 健 赵晓亮 何小溪 盛国飞
张蓓蓓 周 文 刘燕克
编 写 付 丽 张久琴 郝红梅 于 鹏 耿 楠
本报告整理分析了巴西、俄罗斯等新兴国家和美国、欧盟等发达国家（地区）有关汽车制造业的市场准入制度和产业扶持政策，列举了我国汽车制造业出口过程中面临的主要贸易和投资壁垒，希望为政府部门、相关企业尤其是自主品牌企业提供参考借鉴。
目录

一、中国汽车制造业发展及海外贸易投资概况 .. 1
 （一）产业范围概述 .. 1
 （二）产业发展历程 .. 1
 1. 创建与自我发展阶段（1953—1977 年） 1
 2. 引进来与快速发展阶段（1978—2000 年） 1
 3. 走出去与全速发展阶段（2001 年至今） 2
 （三）产业发展现状 ... 2
 1. 产业规模和产业地位 ... 2
 2. 自主创新、转型发展 ... 4
 3. 环保等制约因素对产业政策的调整 .. 5
 4. 汽汽车产业“走出去”战略 ... 6
 （四）汽车产业面临的国内外形势 ... 10
二、主要国家汽车制造业准入制度 ... 12
 （一）巴西 .. 12
 1. 汽车产品准入制度框架 ... 12
 2. 汽车产业投资制度框架 ... 17
 （二）俄罗斯 .. 19
 1. 汽车产品准入制度框架 ... 19
 2. 汽车产业投资制度框架 ... 23
 （三）欧盟 ... 24
 1. 汽车产品准入制度框架 ... 24
 2. 汽车产业投资制度框架 ... 33
 （四）美国 ... 33
 1. 汽车产品准入制度框架 ... 33
三、主要国家扶持本国汽车制造业的实践

(一) 巴西

1. 财税政策 ... 40
2. 金融政策 ... 43
3. 贸易救济措施 ... 43

(二) 俄罗斯

1. 财税政策 ... 44
2. 其他政策 ... 46

(三) 欧盟

1. 财税政策 ... 47
2. 金融政策 ... 49
3. 贸易救济措施 ... 50

(四) 美国

1. 财税政策 ... 51
2. 贸易救济措施 ... 54
3. 知识产权保护政策 54

四、主要国家汽车市场壁垒

(一) 巴西

1. INOVAR AUTO项目 56

(二) 俄罗斯

1. 汽车认证标准 ... 57
2. 汽车扶持政策 ... 57
3. 汽车报废税 .. 58

(三) 欧盟

1. 排放标准 ... 58
2. 认证制度 ... 59
3. 环保管理体系认证 59

(四) 美国

1. 技术性贸易壁垒 60
2. 知识产权壁垒 ... 60
3. 认证壁垒 ... 61
一、中国汽车制造业发展及海外贸易投资概况

（一）产业范围概述

汽车制造业作为汽车产业的主要部分，具有产品种类多、产业链长、关联产业多的特点，是综合性极强的产业。在我国的标准产业目录中，汽车制造业属于交通运输设备制造业，包括载重汽车制造业、客车制造业、小轿车制造业、微型汽车制造业、特种车辆及改装汽车制造业、汽车车身制造业、汽车零部件及配件制造业等 7 个行业。本报告分析的汽车制造业仅指前 4 个行业。

（二）产业发展历程

从 20 世纪 50 年代第一汽车制造厂的建成，我国汽车制造业至今已有 60 年的发展，经历了由计划经济向市场经济的转型，逐步形成了几个主要的汽车生产基地，并带动汽车零部件制造业以及汽车服务业的发展，产业链逐步形成。中国汽车工业的发展历程可分以下几个阶段。

1. 创建与自我发展阶段（1953—1977 年）

1953 年 7 月 15 日，第一汽车制造厂在长春动工兴建，1956 年 7 月 13 日国产第一辆解放牌载货汽车驶下总装配生产线，结束了中国不能自己制造汽车的历史。此阶段我国汽车产业主要依靠自主研发，产业成长速度慢，产品制作成本高，制作工艺不成熟，生产批量小，汽车产品以中型载货货车为主，呈现“缺重少轻，轿车几乎空白”的状况。

2. 引进来与快速发展阶段（1978—2000 年）

此阶段在改革开放方针指引下，汽车产业开始引进外资，建立合资企业。汽车制造的重点也从载货汽车逐渐转向轿车生产。1983 年 5 月 5 日，北京汽车制造厂和美国汽车公司的代表在“经营协议书”与“合资章程”上签字，中国第一家整车合资企业诞生。1985 年 3 月，经改革开放总设计师邓小平“拍
板”的国内首个轿车合资企业——上海大众公司正式成立。1986年，中国政府正式把汽车工业列为支柱产业，并确定了发展轿车工业要“高起点、大批量、专业化”的原则，中国在轿车生产方面走上通过合资引进技术的道路。1987年中国轿车工业最早的“三大三小”形成，形成上海、一汽、二汽三个轿车工业基地。1994年我国《汽车工业产业政策》第一次明确提出国家鼓励汽车行业利用外资发展我国的汽车工业，其后掀起了汽车工业合资热潮，世界汽车工业巨头纷纷进入中国。

3. 走出去与全速发展阶段（2001年至今）

在此期间，我国汽车工业尤其是轿车工业技术进步的步伐大大加快。随着国家鼓励轿车进入家庭，以及加入WTO后汽车产业政策的相应调整，汽车市场不断开放，长期受到抑制的汽车消费出现“井喷”行情，私人消费成为汽车市场主体。我国汽车产销量不断攀升，成为汽车产销量第一大国。各大跨国车企在中国均实施积极的扩张政策，同时也推动了自主品牌轿车的飞速发展。自主品牌开始走出国门，成为出口的主力军，并在国际并购中崭露头角。为适应全球汽车产业的发展趋势以及应对日益激烈的国内竞争形势，主要汽车企业通过兼并重组加快全国产业布局。

（三）产业发展现状

2013年中国汽车产业继续保持平稳增长态势，汽车产量连续五年保持全球第一，国内汽车自主创新、转型发展有所进展，但和国际先进水平差距较大；产业发展外部约束加剧，节能和新能源汽车发展步伐加快；汽车产业“走出去”战略取得可喜进展，整车出口创历史新高，自主品牌企业国际化发展步伐加快，成为中国汽车产业走出去潮流的生力军。

1. 产业规模和产业地位

首先，中国汽车新车销量继续稳居世界第一，中国汽车市场成为全球汽车市场中的重要组成部分。2013年，我国汽车市场持续平稳增长态势，汽车产销量第一次双双超过2000万辆，产销量连续五年保持世界第一的位置。据中国汽车工业协会统计，2013年我国汽车产量为2211.68万辆，同比增长14.76%，增速较上年提高10.2个百分点。2013年我国汽车销量为2198.41万辆，同比增长13.87%，增速较上年提高9.6个百分点（见表1）。从分车型产销量来看，乘用车产销量继续快速增长势头，而商务车产销量也一改上年下滑的颓势，产销实现回升势头。其中，乘用车产销1808.52万辆和1792.89万辆，同比分别增长16.50%和15.71%；商用车产销403.16万辆和405.52万辆，
同比分别增长 7.56% 和 6.40%。从分企业情况来看，中国品牌乘用车销售 722.20 万辆，同比增长 11.4%，占乘用车销售市场的 40.3%，市场份额同比下降 1.6 个百分点。国外品牌中，德系、日系、美系、韩系和法系乘用车紧随其后，所占市场份额分别为 18.8%、16.4%、12.4%、8.8% 和 3.1%。

表 1 2002—2013 年中国汽车产销量及占世界产销量比重

<table>
<thead>
<tr>
<th>年份</th>
<th>产量</th>
<th>销量</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>中国汽车产量</td>
<td>世界汽车产量</td>
</tr>
<tr>
<td>2002</td>
<td>325</td>
<td>5 878</td>
</tr>
<tr>
<td>2003</td>
<td>444</td>
<td>6 058</td>
</tr>
<tr>
<td>2004</td>
<td>507</td>
<td>6 450</td>
</tr>
<tr>
<td>2005</td>
<td>571</td>
<td>6 655</td>
</tr>
<tr>
<td>2006</td>
<td>728</td>
<td>6 922</td>
</tr>
<tr>
<td>2007</td>
<td>888</td>
<td>7 327</td>
</tr>
<tr>
<td>2008</td>
<td>935</td>
<td>7 053</td>
</tr>
<tr>
<td>2009</td>
<td>1 379</td>
<td>6 170</td>
</tr>
<tr>
<td>2010</td>
<td>1 826</td>
<td>7 761</td>
</tr>
<tr>
<td>2011</td>
<td>1 842</td>
<td>8 011</td>
</tr>
<tr>
<td>2012</td>
<td>1 927</td>
<td>8 414</td>
</tr>
<tr>
<td>2013</td>
<td>2 212</td>
<td>—</td>
</tr>
</tbody>
</table>

其次，汽车产业在国内经济中的主导地位进一步凸显。汽车产业作为我国国民经济的支柱产业，从汽车工业增加值及其占 GDP 的比重来看，2012 年我国汽车工业增加值为 8 077.6 亿元，占 GDP 的比重为 1.56%，比 2011 年降低 0.02 个百分点。尽管汽车工业增加值在稳步增长，但增速有所放缓。汽车产业对 GDP 的贡献度同德国、日本等汽车工业强国相比有较大差距，这些汽车强国的汽车工业总产值占 GDP 的比重都在 10% 以上。从汽车工业总产值及其占全国工业总产值的比重来看，2012 年我国汽车工业总产值为 5.29 万亿元，占全国工业总产值的比重为 5.85%，同 2011 年相比提高近 2 个百分点，汽车产业在全国工业中的地位有较大程度的提升。2013 年，中国汽车工业重点
企业（集团）实现了产销稳定增长，累计完成工业增加值 6033.21 亿元，同比增长 25.1%；累计完成工业总产值 2.51 万亿元，同比增长 19.3%；累计完成工业销售产值 2.49 万亿元，同比增长 18.6%。

图 1 中国汽车产业增加值及占 GDP 的比值

图 2 中国汽车工业总产值及占全国工业总产值的比重

资料来源：历年《中国汽车工业年鉴》。

2. 自主创新、转型发展

在国家实施创新驱动发展战略的大背景下，汽车产业的自主创新被放在更突出的位置。一方面，国内汽车企业研发力度在持续加大。目前有少部分企业研发投入的比例已能占到销售收入的 8% 至 10%。另一方面，政府在自主创新和转型发展方面发挥更大的指导性作用。国务院出台的《汽车产业调整和振兴规划》中明确提出发展自主品牌汽车的战略。《节能及新能源汽车产

① 重点企业共 343 家。
一、中国汽车制造业发展及海外贸易投资概况

业规划》将引导国家的战略性新兴产业——新能源汽车发展迈上一个新台阶。新型产学研合作机制正在形成。由同济、清华等大学和中科院大连物理化学研究所等研究机构以及 12 家国内汽车整车及零部件企业组成的“中国燃料电池汽车技术创新战略联盟”成立。广汽集团和奇瑞汽车建立战略联盟在研发资源上开展共享合作。

国内车企在自主研发上的持续投入带来关键技术领域上的重要进展。长城、比亚迪、华晨等主土量产车上陆续采用自主研发的 1.5 升小排量涡轮增压发动机，在输出功率和扭矩上丝毫不逊色于合资品牌同级别发动机。变速器方面，吉利推出 6AT 变速器；奇瑞推出 CVT 无级变速器，打破合资车企的技术垄断；陆风在 X5 上更是配备 8AT 变速器，一举走到世界前列；比亚迪成功研发掌握 6 速 DCT 双离合变速箱技术。

3. 环保等制约因素对产业政策的调整

无论是资源和环境约束对汽车行业形成的“倒逼机制”，或者是产业政策和社会舆论的引导，都促使我国的汽车行业向绿色、节能的方向发展。2005 年以来，通过实施严格的乘用车燃料消耗量限值标准和鼓励小排量汽车消费的税收政策，以及各类节能技术的推广应用，我国汽车油耗明显降低。经过近十年的自主研发和示范运行，我国在动力电池、驱动电机、电子控制和系统集成等关键技术领域取得明显进步，纯电动汽车和插电式混合动力汽车开始小规模投入市场，燃料电池技术水平不断提高。

行业快速发展面临的资源、环境和社会问题约束愈加凸显。首先，面临着能源短缺的巨大挑战。汽车保有量不断增加直接推动了国内石油需求量的上升。未来较长一段时期汽车保有量的持续增长将给我国带来更大的石油供给压力。其次，我国部分地区频繁出现大范围雾霾天气使得城市环境污染问题受到普遍关注，汽车污染物排放也对我国大气质量，特别是大城市空气质量的影响程度越来越大。最后，一线城市汽车消费增长受到城市拥堵的制约，城市综合交通能力建设滞后于汽车保有量和使用量的增长速度，交通拥堵成为常态，部分城市采取限制机动车增长的行政性措施，使这些城市的汽车消费受到约束。

① 12 家企业包括：中国第一汽车集团公司、上海汽车集团股份有限公司、东风汽车股份有限公司、上海燃料电池汽车动力系统有限公司、新源动力股份有限公司、重庆长安新能源汽车有限公司、奇瑞新能源汽车技术有限公司、上海新源动力有限公司、上海神力科技有限公司、昆山弗尔赛能源有限公司、北京清能华通科技发展有限公司、广东广顺新能源动力科技有限公司。
汽车产业政策调整主要集中在支持节能与新能源汽车发展。2012年4月《节能与新能源汽车产业发展规划》出台，提出纯电动汽车和插电式混合动力汽车产业销量发展目标，2015年力争达到50万辆，2020年为200万辆，并为节能与新能源汽车的发展指明了路径。2012年底公布新能源汽车产业技术创新工程拟支持的项目，其中纯电动乘用车项目包括：江淮第五代纯电动轿车、东风小型纯电动轿车、北京牌全新平台纯电动轿车、吉利帝豪EC7的全新纯电动轿车、长安C206的纯电动车技术开发项目。插电式乘用车入选项目包括比亚迪、一汽红旗、奇瑞、上汽荣威等项目。

4. 汽车产业“走出去”战略

为应对国内需求趋缓以及国内竞争加剧行的局面，国内自主品牌汽车行业进一步加大海外市场的开拓力度。直接出口产品是中国企业最先采取的“走出去”的方式，经过近30年的市场磨砺，中国汽车企业在中低端产品上取得了一定的比较优势，在发展中国家的市场开拓上取得了一定的成绩。伴随着自主品牌整车的出口，自2005年中国车企就迈出了海外设厂的步伐，其后逐步加快。国际金融危机爆发后，中国汽车企业积极采用跨国并购方式，并相继在海外成立研发中心；合资企业开始实施海外市场战略，并逐步融入全球新车开发体系。2012年汽车整车出口数量和金额再创历史新高，中国汽车出口交出突破百亿元的成绩单。我国的汽车产业走出去取得了初步成效，未来汽车产业要加速走出去的步伐，必须在品牌建设和售后服务领域加强建设。

（1）汽车产业出口贸易情况

10多年来，我国汽车产业出口的主要特点为：

第一，汽车出口取得快速增长，但同世界汽车强国相比仍有较大差距。

在过去的十年中，中国汽车产业出口取得快速增长。2002—2007年是汽车产业出口的第一个高速增长期，出口额由2002年的33.6亿美元快速增长至476.3亿美元，年平均增长率达到69.9%。受国际金融危机的影响，2008年第四季度至2009年，汽车出口大幅下滑。2010年汽车出口再次大幅度增长，2012年汽车出口量突破百万辆，汽车行业出口额达到744.5亿美元。2013年由于海外市场的低迷，以及人民币升值等因素的影响，我国汽车产品出口增速放缓，出口金额784.2亿美元，增长5.3%。

尽管我国的汽车出口在10多年的时间里取得了快速的增长，但同我国目前的汽车产销量来看，汽车出口仍处于较低的水平。2013年汽车出口量占总产量的比重不足4.5%，依靠内需拉动仍是我国汽车工业发展的主要特征。
个比重在全球主要汽车生产国中处于最低水平，无法同欧洲、日韩等汽车强国相比，也同我国全球第一汽车生产大国的地位极不匹配。

目前，我国汽车出口仍然处于起步阶段，以简单的产品贸易方式为主。中国的汽车企业起步较晚，还处于成长期，自身发展还不成熟，产品与品牌都还处于弱势地位，竞争手段主要依靠价格。比较竞争优势主要体现在低价格上。

这个阶段企业主要依靠订单来拉动产品。由于产品竞争能力低下，企业的配套服务设施跟不上，品牌还不完全被海外市场所接受，因此大规模拓展海外市场还不具备条件，企业只能通过贸易的方式依靠订单向海外市场输送产品。产品流向市场主要是汽车工业不发达的国家。虽然对发达国家有一定的出口，但量不大。从目前的发展来看，这一阶段仍需要5年左右的时间。

这个阶段市场的机会主义倾向表现明显。市场开拓方式主要是利用当地（总）代理商（经销商）的现有网络将企业适合的产品在本地销售。销售网络、渠道及售后服务都是靠代理商来维护的，涉及企业投资、管理及生产领域事务较少。

表2 2002—2013年中国汽车产业（含整车和零部件）出口情况

<table>
<thead>
<tr>
<th>年份</th>
<th>出口额</th>
<th>汽车出口额占全国货物出口总额的比重</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>33.6</td>
<td>1.03</td>
</tr>
<tr>
<td>2003</td>
<td>80.3</td>
<td>1.83</td>
</tr>
<tr>
<td>2004</td>
<td>124.2</td>
<td>2.09</td>
</tr>
<tr>
<td>2005</td>
<td>167.7</td>
<td>2.20</td>
</tr>
<tr>
<td>2006</td>
<td>289.1</td>
<td>2.98</td>
</tr>
<tr>
<td>2007</td>
<td>412.6</td>
<td>3.38</td>
</tr>
<tr>
<td>2008</td>
<td>476.3</td>
<td>3.33</td>
</tr>
<tr>
<td>2009</td>
<td>383.5</td>
<td>3.19</td>
</tr>
<tr>
<td>2010</td>
<td>541.4</td>
<td>3.43</td>
</tr>
<tr>
<td>2011</td>
<td>719.7</td>
<td>3.79</td>
</tr>
<tr>
<td>2012</td>
<td>744.5</td>
<td>3.63</td>
</tr>
<tr>
<td>2013</td>
<td>748.2</td>
<td>3.2</td>
</tr>
</tbody>
</table>

资料来源：2002—2012年数据来自《中国汽车工业年鉴》和《中国海关统计》，2013年数据为中国汽车工业协会统计。

第二，出口以零部件为主，但整车出口数量快速增长。
从产品类别来看，汽车零部件产品仍是中国汽车产业出口的主力。2013年汽车零部件产品出口额为635亿美元，占汽车商品出口总额的81.0%，占最大比重。出口的汽车零部件产品主要是行驶系统、汽车电子电器、车身及附件劳动力密集型和资源密集型产品，主要针对中、低端售后服务市场。在整车出口方面，整车出口金额占汽车产业出口总额的比重仍较低，但整车出口数量呈快速增长走势，2012年整车出口达到历史最高峰，超过百万辆。2013年，整车出口数量有所下滑，为94.81万辆。

第三，整车出口以轿车和载货车为主。

在整车出口产品结构方面，乘用车的重要性逐步提升，以往商务车占主导地位的情况正发生变化。2011年乘用车出口量首次超越商用车，居出口首位。在乘用车中，轿车的出口数量居前。中国乘用车出口占整车出口比例从2001年的18.1%逐步提高到2013年的55.7%，其中，轿车占整车出口比例从2001年的4.1%逐步提高到2013年的48.7%，成为第一大出口车型。轿车出口仍集中于低端经济型，1.5升及以下品种所占比重依旧最大，占轿车出口总量超过半数以上。商用车在我国的整车出口中仍占据重要作用，商用车出口以载货车和大客车为主，这两类车型的特点在于：属于劳动密集型产品，均为自主品牌，自主知识产权占主导地位，产品技术附加值高，具有较高的国际市场竞争力。2013年载货车出口28.55万辆，占整车出口比例的32.7%；客车出口16.62万辆，占比为19.1%。

第四，自主品牌领军出口，合资企业加入阵营。

在主要汽车出口企业中，自主品牌企业始终占据主力。2013年上半年，吉利、奇瑞、长城、力帆和江淮等自主品牌企业位居汽车出口企业的前五位。与此同时，面对中国低速增长的态势，外资品牌在中国扩大的产能释放必须通过出口才能完成，部分合资企业纷纷推出中国本土研发的合资品牌参与出口的竞争，例如，神龙汽车出口埃及；北京奔驰生产的一款长轴距 E 级 35 辆奔驰轿车出口南美市场；上海通用的雪佛兰新赛欧出口智利和利比亚；上汽依维柯红岩商用车出口海湾和非洲国家；华晨宝马出口中东、非洲、南美等地。

第五，整车出口集中在发展中国家，主要汽车出口市场不稳定。

从汽车整车出口的分布情况看，我国的汽车整车出口市场主要是非洲、中东、南美和东欧等发展中国家。由于发展中国家的产业政策、法律环境不稳定等因素，以及发展中国家贸易保护意识的不断增强，繁多的非关税壁垒等限制，导致中国的汽车出口在国别层面上非常不稳定，主要汽车出口市场频繁更
换。2010 年汽车出口基本是规模较小的发展中国家，尤其是对非洲的国家出口增长较快。2011 年出口增长转向巴西、俄罗斯等规模较大的市场。2012 年由于巴西政府出台提高工业品税的政策，对我国汽车整车对巴西的出口影响十分明显，出口巴西回落明显，巴西跌出前十行列。2013 年中国汽车出口市场变化依旧很大，南美取代非洲成为中国整车出口第一大市场，所占份额达 30%。

尽管我国整车出口目前仍以发展中国家为主，但发达国家更广阔的市场空间仍是我们的努力方向。我国整车产品已经开始小批量、探索性地进入发达国家汽车市场，如长城汽车通过欧盟认证后，已开始向英国、意大利、保加利亚等国出口风骏系列皮卡和腾翼系列轿车产品，在澳大利亚累计销量超过 2 万辆。吉利也开始在英国销售帝豪汽车。

（2）汽车产业海外投资情况

《中共中央关于制定国民经济和社会发展第十二个五年规划的建议》提出，加快实施“走出去”战略。汽车企业走出去分为四个阶段：简单的汽车贸易；在当地建立组装工厂；大规模本地化生产，突破区域市场；在当地研发适合当地消费者的产品，甚至为当地创建品牌。目前我国自主品牌车企处于第二阶段，采取海外建厂方式加速拓展国际市场，既能规避整车出口的高税率，取得更大的成本优势，又可以充分利用当地有利的开放政策和市场环境，对于我国汽车提升出口利润率和提升国际化水平都有非常重要的作用。

近几年，自主品牌车企海外建厂速度加快，长城、奇瑞等汽车企业已经陆续在境外建厂。2012 年 5 月，奇瑞宣布在越南北部建立 CKD 生产基地，并与越南合作伙伴达成生产和销售奇瑞系列产品的协议，至此，奇瑞海外工厂已经扩至 17 家；吉利的海外生产基地也在不断增加，2012 年和 2013 年在埃及、乌拉圭和白俄罗斯的海外工厂相继投产，而在巴西、印度和伊朗的海外工厂也正处于筹划中。一汽集团在南非纳尔逊·曼德拉湾市建立了新的海外生产基地，建成后卡车年产量将达 5000 辆；2011 年长城汽车在保加利亚建成组装工厂，2012 年投产，这是中国汽车制造商首次在欧盟投资投厂。汽车的主要销售市场开始为保加利亚当地以及周边国家，包括罗马尼亚、土耳其等，之后从东欧逐步向北拓展。

海外汽车投资政策的变化，也促进了各大车企海外投资建厂。2012 年 4 月，巴西政府宣布决定实施减免汽车工业品税的临时措施，这一政策直接刺激了中国车企调整投资战略，奇瑞、江淮、陕汽、福田等相继在巴西建厂。除了在
外投资设厂、海外建立研发中心也已开始。其中，力帆率先在巴西设立研发中心，在南美地区实现研发—生产—销售一体化。

目前，我国车企海外投资有以下的特点：首先，我国车企海外设厂的地区仍以发展中国家为主。自主品牌海外市场主要集中在南美、中东、东欧等国家。巴西、埃及都是近两年中国车企投资的热点，奇瑞和华晨、吉利相继在埃及建厂，奇瑞、比亚迪、江淮等品牌的汽车在埃及街头随处可见。除了中国汽车品牌传统的南美、中欧和中东市场，一些新兴的市场也被纳入车企海外布局的版图。长城汽车将在印度建立一家独资的工厂，并计划在2016年投产。长城汽车海外KD工厂已有近20家，对于巴西、土耳其、委内瑞拉、哈萨克斯坦、印度等国的KD项目也在积极开拓中。

其次，目前的海外工厂规模小、布局分散，没有达到规模经济。尽管吉利在巴西的建厂项目规划了产能10万辆，已经属于海外建厂的“大手笔”，但短期内也难以达到。长城汽车预计到2015年，海外KD组装厂将达到24家，海外年产能将达50万辆，KD年销量达30万辆以上。但平均每个工厂的产能仅为2万辆。奇瑞也有类似特点，其在海外拥有了17家工厂，总产能为21万辆。按此计算每个工厂产能仅为1.2万辆。

（四）汽车产业面临的国内外形势

从国际环境看，自2008年国际金融危机发生以来，全球汽车产业发展状况发生了巨大变化，既孕育着新的机遇，也伴随着严峻挑战，对我国汽车工业发展带来深刻影响。

第一，从总量来看，全球汽车市场容量将进一步增长。目前，全球汽车的产销量、保有量已经恢复到危机之前的水平。传统汽车市场不同程度的开始复苏。根据麦肯锡的预测，到2020年全球汽车销量将达到1亿辆左右。

第二，从市场结构来看，发达国家的市场面临收缩，而新兴经济体将成为全球汽车市场的重心。这种趋势在危机后日益明显，全球汽车市场增长率40%以上为金砖国家所贡献。根据麦肯锡的预测，到2020年，新兴经济体对全球汽车市场的贡献率将达到70%左右。

第三，全球汽车市场的竞争更加激烈。首先是由于全球汽车市场增速的放缓而导致，尽管全球汽车市场的容量将进一步增长，但增速却有所放缓，各大车企将面临更加激烈的竞争形势，也导致全球针对汽车行业的保护主义倾向日益严重。巴西政府2011年9月宣布大幅提高汽车工业品税30个百分点以保护本国汽车产业。其次，未来消费模式的改变将导致技术和研发领域的
竞争更加激烈。随着消费模式越来越倾向于定制化和个性化，未来消费模式的改变必将影响生产方式，对汽车生产平台、研发技术等提出更高的要求。

第四，全球汽车产业在节能与新能源汽车为主攻方向的新一轮国际产业竞争已全面展开。各主要汽车生产国，一方面通过采取法规约束、政策激励等综合措施，提出绿色汽车、低碳汽车等概念，大力发展和应用汽车先进节能技术，同时设置并进一步强化技术壁垒；另一方面将发展新能源汽车上升为国家战略，大幅增加研发投入，实施一系列扶持政策，加快推进产业化。

第五，在国内市场自主品牌与外资品牌竞争加剧。从国内情况看，我国汽车工业发展的基本条件和长期向好趋势没有改变，扩大内需战略实施和居民消费结构升级为汽车工业发展提供了广阔的市场需求。“十二五”期间，随着我国国民经济的发展和人民生活水平的提高，居民消费升级对汽车的需求仍将持续增长。但在规模快速扩张的同时，自主品牌汽车和外资在华合资品牌之间的竞争更加激烈，汽车行业快速发展面临的资源和环境约束愈加凸显，汽车工业提高自主创新能力、实现转型升级、向绿色和环保方向发展势在必行。
二、主要国家汽车制造业准入制度

(一) 巴西
1. 汽车产品准入制度框架

巴西对进口产品实施较为严格的准入制度，并且对国内外产品实施不同的认证程序。巴西第 8.723/93 号法令规定，外国车辆要想进入巴西，除了要满足巴西对汽车产品技术法规的要求，还要满足对进口车辆的特殊要求，即对车辆进行环保和安全的整车型式认证。

1. 汽车认证主管部门

巴西车辆准入由两个政府部门进行监管，分别为巴西环境和可再生自然资源管理局 (IBAMA) 和巴西运输部 (DENATRAN)。IBAMA 负责车辆环保性能的监管，DENATRAN 负责车辆安全性能方面的监管。只有当一款车型同时获取 IBAMA 通过的环保合格证书 LCVM 及 DENATRAN 通过的安全合格证书 CAT 后，方视为通过认证审查，具备了销往巴西市场的资质。

A. IBAMA

巴西环境和可再生自然资源管理局 (IBAMA) 是巴西联邦环境部的直属机构之一，是负责车辆环保性能监管的政府主管部门。为有效保护环境，控制机动车的尾气排放污染，IBAMA 于 1986 年发布并实施了一项规划，称之为机动车辆排放符合性认证国家规划 (PROCONVE)。PROCONVE 分别对轻型车 (PROCONV L) 和重型车 (PROCONV P) 制定了不同的排放要求。对于认证合格的进口车辆，IBAMA 颁发 LCVM 证书。巴西国家环境审议机构 (CONAMA) 由政府各部门和一些环境社会组织共同组成，依据 PROCONVE 和其他排放认证要求制定了一系列 CONAMA 决议，对车辆排放水平进行了
具体说明。

B. CETESB

巴西圣保罗州环境与卫生技术中心(CETESB)是IBAMA所属并授权的技术支持机构，负责车辆环保认证的具体工作。一般来说，进口商需要将样车送至巴西CETESB试验室接收相关排放试验测试，合格后获得最终实验报告，用于生产商或进口商申请LCVM证书。

C. DENATRAN

巴西运输部(DENATRAN)是巴西主管车辆安全性能的政府监管部门，负责车辆安全及识别，颁发最终符合交通法律的CAT证书，管理国家所有车辆的注册及上牌工作。在实施方面，其授权INMETRO进行安全项目的测试。虽然DENATRAN不直接对车辆进行试验审查，但会不定期对已经通过认证试验的车辆进行抽查，例如碰撞测试等。国家运输部下属的国家运输委员会(CONTRAN)具体负责发布一系列车辆的技术法规，成为汽车技术法规体系中非常重要的环节。

D. INMETRO

巴西计量、标准化和工业质量国家研究院(INMETRO)成立于1973年，隶属于巴西发展工业外贸部，负责对巴西汽车及国民经济中其他涉及安全环保产品的管理，在汽车产品方面，经DENATRAN授权，负责对车辆安全进行具体的检测、审核等具体认证工作。

INMETRO认证属于强制性认证，除了符合巴西标准外，还需要有INMETRO授权并认可的第三方认证机构的参与，如IQA或IFBQ等。合格产品需要同时附有INMETRO的强制认证标志和第三方认证机构的标志，才可以进入巴西市场。目前，在巴西境内受INMETRO认可的第三方认证机构已经超过50家。

(2) 认证步骤和程序

从环保认证步骤看，制造商可授权进口商作为代理，向IBAMA及CETESB提交申请材料，包括寄给CETESB的LCVM申请书原件、车辆描述原件、实验报告原件、实验室资格证明复印件和寄给IBAMA的两份LCVM申请书复印件。接下来的步骤是，预约并进行排放、噪声预测试和正式目击测试。进行测试时，IBAMA和CETESB的官员要共同目击。

巴西对大、小批量汽车进口的要求不同。对于年出口总量超过100辆的车辆，巴西要求必须在巴西境内完成环保测试，而不认可境外检测机构或
试验室的认证结果；如果年出口辆低于100辆，巴西允许制造商在本国完成相关排放测试，采用美国FTP75方法进行气体排放和蒸发排放，噪声排放包括动态和稳态试验的报告。

从安全认证步骤看，进口商在申请LCVM证书的同时，也可开始申请CAT证书的各项步骤。另外，为确保安全，除整车完成认证外，INMETRO要求对轮胎产品进行单独测试并获得认可。

(3) 认证技术指标和其他要求

认证要求主要分环保类和安全类。在认证标准方面，巴西的法规体系较为复杂，大部分的巴西标准来自联合国欧洲经济委员会ECE法规，有些巴西标准也来自美国标准（FTP和FMVSS）和欧洲标准，这些标准在有些实际要求中相互交叉。

A. 环保类

环保类要求主要为排放和噪声要求。在排放的测试方面，轻型车采取美标EPA-FTP75工况循环，重型车则采取欧标ETC\ELR\ESC测试方法。根据PROCONVE的规定，汽车制造商必须保证至少8万公里的汽车排放限值。

CO、NMHC、NOx排放是根据ABNTNBR6601制定的，醒排放是根据NBR12026制定的。值得注意的是，巴西灵活燃料车使用乙醇—汽油混合燃料（E20-E25，含20％—25％的乙醇）、100％水合乙醇，或以上两种燃料任何比例的混合燃料。因此，对于灵活燃料车认证，排放测试应至少用三种不同燃料进行；E22乙醇—汽油混合燃料（含22％乙醇）、100％水合乙醇或以上两种燃料各一半的混合燃料。

对于轻型车，2009年起，巴西排放限值标准为PROCONVE L-5阶段，而自2014年起将升级至PROCONVE L-6阶段（见表3、表4）。与阶段L-5相比，阶段L-6的CO、NOx和PM的排放限值显著降低。轻型车包括三个阶段的排放试验：冷起动阶段、巡航阶段和10分钟休息之后的热启动阶段，将每种污染物的排放结果平均以得到最终结果。但是，虽然PROCONVE L-6阶段相当于欧V排放标准，但却相对宽松，例如没有包含强制过滤排放物（PM）的颗粒质量或数量的排放标准要求。

对于重型车，依据CONAMA403/2008决议，参照欧V的法规要求，自2012年1月1日起，巴西开始实行“国家机动车空气污染治理计划”的P-7阶段（见表5、表6），这一标准将大幅降低公共汽车、卡车等重型机动车的污染，达到相当于目前最发达国家的水平。

二、主要国家汽车制造业准入制度

<table>
<thead>
<tr>
<th>表 3 乘用车排放标准执行阶段（FTP-75，耐久试验：80 000 公里/5 年）</th>
</tr>
</thead>
<tbody>
<tr>
<td>阶 段</td>
</tr>
<tr>
<td>实施日期</td>
</tr>
<tr>
<td>CO</td>
</tr>
<tr>
<td>NMHC</td>
</tr>
<tr>
<td>NOx</td>
</tr>
<tr>
<td>PM²</td>
</tr>
<tr>
<td>HCO</td>
</tr>
</tbody>
</table>

1) 2014 年起对奥托循环车辆生效，2015 年起对新车型/各地的所有注册车辆生效。
2) 仅适用于柴油动力车辆。

<table>
<thead>
<tr>
<th>表 4 轻型商用车排放标准执行阶段（FTP-75，耐久试验：80 000 公里/5 年）</th>
</tr>
</thead>
<tbody>
<tr>
<td>类 型</td>
</tr>
<tr>
<td>阶 段</td>
</tr>
<tr>
<td>实施日期</td>
</tr>
<tr>
<td>CO</td>
</tr>
<tr>
<td>NMHC</td>
</tr>
<tr>
<td>NOx</td>
</tr>
<tr>
<td>PM²</td>
</tr>
<tr>
<td>HCO²</td>
</tr>
</tbody>
</table>

1) 2014 年起对奥托循环车辆生效，2015 年起对新车型/各地的所有注册车辆生效。
2) 仅适用于汽油或乙醇燃料车辆。
3) 仅适用于柴油动力车辆。

目前在巴西，重型车辆仍然普遍装配柴油发动机。近年来，巴西政府已经开始发展生物柴油，2005 年巴西开始实施生物柴油规划。2008 年 1 月起，所有柴油必须掺加 2% 的生物柴油（B2），2008 年 7 月提高至 3%（B3），到 2013 年达到 5%。巴西农作物产量丰富，为生物柴油的生产提供了源源不断的原材料，也成为巴西政府重视生物柴油的重要原因。

巴西政府要求所有车辆类型都必须安装车载诊断系统 (OBD)。对乘用车要求进行 OBD 的测试，或者提交完整的 OBD 测试报告。测试依据为国际通用 OBD 标准。OBD 系统会随时从发动机的运行状况监控汽车尾气是否超标，一旦超标，会马上发出警示。
表 5 重型柴油车辆排放标准执行阶段 (耐久试验：160 000 公里 / 5 年)
单位：g/km

<table>
<thead>
<tr>
<th>阶 段</th>
<th>P-6</th>
<th>P-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施日期</td>
<td>2009 年起</td>
<td>2012 年起</td>
</tr>
<tr>
<td>试验状态</td>
<td>ESC/ELR¹</td>
<td>ETC²</td>
</tr>
<tr>
<td>CO</td>
<td>1.5</td>
<td>4.0</td>
</tr>
<tr>
<td>THC</td>
<td>0.46</td>
<td>—</td>
</tr>
<tr>
<td>NMHC</td>
<td>—</td>
<td>0.55</td>
</tr>
<tr>
<td>NOx</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>PM³</td>
<td>0.02</td>
<td>0.03</td>
</tr>
<tr>
<td>Smoke</td>
<td>0.5</td>
<td>—</td>
</tr>
</tbody>
</table>

1) 稳态循环试验/负荷烟度试验。
2) 瞬态循环试验。
3) 仅适用于柴油发动车辆。

表 6 重型天然气车辆排放标准执行阶段 (ETC 试验循环)
单位：g/km

<table>
<thead>
<tr>
<th>阶 段</th>
<th>P-6</th>
<th>P-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施日期</td>
<td>2009 年起</td>
<td>2012 年起</td>
</tr>
<tr>
<td>CO</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>NMHC</td>
<td>0.55</td>
<td>0.55</td>
</tr>
<tr>
<td>NOx</td>
<td>3.5</td>
<td>2.0</td>
</tr>
</tbody>
</table>

同时，进口车辆需要进行噪声水平测试，包括行驶状态和静止状态的噪声测试，须要求满足 CONAMA 272/2000 的相关要求。

B. 安全类

2009 年 6 月 29 日，巴西发布了汽车整车型式批准的框架法令（即第 190 号法令），并开始强制实行，由此对各类车辆建立系统的技术法规。法令详细描述了车辆进入巴西市场的程序和应报送的文件和资料表，并规定了不同车辆类别应满足的技术法规项目及要求。由于巴西标准的制定借鉴了很多欧洲标准和美国标准，因此有些项目同样接受等效的欧标或美标试验报告。

同欧洲标准类似，巴西安全测试分为一般安全、主动安全和被动安全三个部分，共计 46 个项目。一般安全部分，主要涉及操控件、喇叭、防盗保护、三角警告牌、前保险杠、灭火器、轮胎及气囊等 19 项；主动安全部分，主要涉及制动
系统、ABS、灯具安装、后视镜、安全玻璃、电动车窗、后保险杠及反射器等 14 项；被动安全部分，主要涉及转向保护、燃油系统完整性、燃油系统、碰撞测试、座椅及头枕、安全带及安全带固定点和侧倾稳定性等 14 项。其中，牌照框要求牌照板必须固定在车身上，不得随意拆卸；安全带应配有加长安全带以固定儿童座椅；灭火器必须固定在驾驶员在不移动座椅的情况下可以拿到的位置；2012 年增加了新的碰撞类要求，采取巴西标准 221/07 决议及 NBR15300，同时认可欧标 ECER33、R94 和 R32。值得注意的是，防盗保护、三角警告牌、追踪系统、前保险杠、灭火器及反射条等测试项目为巴西当地适用法规，必须由当地经销商进行。安全项目可递交欧盟检测机构（TUV、VCA）出具的欧标证书。

由于巴西近年来经常发生车辆偷盗事件，为加强车辆的防盗管理，巴西运输部运输委员会（CONTRAN）于 2011 年发布 CONTRAN DELIBERACAO 121/11 号决议，要求截至 2013 年 3 月 30 日，所有巴西境内销售的新车必须全部强制安装车辆防盗远程跟踪系统（Tracking System），并成为新车的标准配置。系统芯片中储存有包括汽车牌照号、车架号、注册地点和交通罚款信息等，在车辆被盗时可以通过此系统切断车辆供油系统并报告车辆的位置至交通部门。预计到 2015 年，巴西将有超过 250 万辆汽车安装此系统。

此前，巴西的汽车安全系数较低。为提高汽车的行驶安全，巴西政府出台法令，要求 M 类和 3.5 吨以下的载货车辆，截至 2014 年 1 月 1 日要 100% 安装 ABS 防抱死制动系统；2013 年起，所有卡车、公交车和拖车将分阶段强制安装 ABS 系统；截至 2013 年 1 月 1 日，新生产的商用新车安装 ABS 系统的比例要达到 40%，2014 年 1 月 1 日之后生产的商用新车要全部强制安装 ABS 系统。

C. 其他类

车辆在进入巴西海关时，除了要按照巴西要求交纳相关税费外，还必须向巴西外贸局（SECEX）申请车辆及零部件进口证书，取得此证书的时间最长为两周，有效期 60 天。

此外，巴西严格禁止进口二手整车，二手零部件也只有获得特殊授权的公司进行进口，巴西同时禁止进口柴油乘用车。

2. 汽车产业投资制度框架

巴西的外商投资制度适用于所有产业，对汽车产业无特殊规定。

（1）基本法律和主管部门

巴西管理外国投资的主要法律是《外国资本法》，其实施细则是 1965 年第
巴西与投资有关的法律主要有《外资管理法施行细则》、《劳工法》、《公司法》、《证券法》、《工业产权法》、《反垄断法》和《环境法》等。巴西1995年的宪法修正案取消了内资和外资的区别，内外资在法律上一律平等，禁止所有形式的歧视待遇。

巴西联邦政府十分重视招商引资的工作，2005年起，“引资计划”中的投资促进事务由巴西出口促进局负责。巴西出口促进局原本是专门促进巴西出口的组织，2004年设立了投资机构，负责吸引外资进入巴西。巴西各州设立了一级的投资促进机构，目前已经有15个地区建立了投资促进机构，基本处于经济发达并且已经吸引了大量外资的区域。不同行业的外资政策一般由负责该行业的政府部委具体负责，一些重大项目的外资政策还需总统最后批准。

（2）外资注册登记要求

巴西中央银行具体负责外资的登记注册和跟踪分析工作，并定期发布外资的统计数据及外资司具体负责这一工作。

使用外国货币在巴西进行投资不必事先经巴西政府批准。在巴西投资建厂或获得现有巴西企业所有权时，需通过巴西有权进行外汇操作的银行将外国货币汇入巴西。外资注册由巴西受益企业向巴西央行提出申请，申请应在外汇买卖合同成交后30天内完成，申请时应同时提交资金的资产化证明。

外国信贷转化的投资须事先经巴西央行批准，批准后，应进行象征性的外汇买卖操作。巴西企业应在30天内将该资金资产化，并向巴西央行提出外资注册申请。

以投资形式进入巴西的进口商品受非自动进口许可证（LI）的管理，进口商（外资或合资企业）需事先向巴西发展商部外贸局（DECEX）提出进口申请。外贸局对申请进行审核后，经巴西央行会签后，发放进口许可证，申请和批准均通过“巴西外贸网”（SISCOMEX）进行。报关手续与一般受非自动进口许可证管理的商品进口无异。

巴西海关政策委员会可对投资进口的机械、设备上调或下调30%的进口关税。上调或下调的幅度取决于投资地区的特点、机械设备的技术水平及进口前的损耗程度。

以进口货物、机械、设备及其零部件进行的投资必须在通关后180天内融入目标企业资产。在进口商品融入企业资产之前，进口商品应以“追加资本”的名义记在投资者名下，记录时按商品通关之日的汇价将商品价值转换成雷
亚尔。资产融合后的 30 天内，企业应向巴西央行提出外资注册申请。

（3）外资转移的要求

巴西中央银行制定了国际资本和外汇市场条例（RMCCI），且在不断更新。巴西规定，外资企业的利润汇出不受限制，也不必缴纳源头所得税，外资撤资也无须事先批准。但是，从巴西到境外的汇款必须通过中央银行授权经营外汇业务的机构进行，且受中央银行的监管。外资企业利润汇出需要缴纳资本利得税，税率为 15％。同时，一切利润汇出、撤资以及利润再投资应以巴西央行的外资注册为基础，若有不符，外汇汇出将受到限制。

（4）其他注意事项

2010 年，巴西总统批准了一项规定，限制向海外投资者出售农业用地。根据这一最新规定，海外投资者以及海外控股比例超过 50％的当地公司在收购农业用地时将遭到限制。关于限制的具体操作将根据各个案例的具体情况来决定，并取决于土地收购的地区。

（二）俄罗斯

1. 汽车产品准入制度框架

2009年9月10日俄罗斯总理普京签署联邦政府第720号《关于批准轮式车辆安全性技术法规》于2010年9月23日生效。目前，俄罗斯联邦汽车产品的准入制度主要是以《轮式车辆安全性技术法规》和《机动车辆、挂车认证系统规则》构成。

俄罗斯进口汽车认证分为一年有效期认证和三年有效期认证，两种认证要求的检测项目差别较大。一年有效期认证也称简化认证，检测项目仅15项，只适用于《1958年日内瓦协议》缔约国生产的小批量进口车辆。三年有效期认证是基于正常要求项目检测的进口汽车认证，检测项目达76项。由于我国不是《1958年日内瓦协议》缔约国，目前，我国出口俄罗斯的汽车只能申请三年有效期认证。

主管汽车产品认证的管理机关为俄罗斯联邦技术调控署，负责汽车产品认证机构及检测试验室的认可工作，俄罗斯内务部道路安全保障司及俄罗斯运输部的代表，依据其职权范围参加认证机构和试验室的认可工作，同时俄罗斯技术调控署地域分支机构和其他组织的代表也可按其职责参与认证工作。由管理机关认可的检测试验室对汽车产品的技术要求进行检测，并向认证机构出具试验报告。由管理机关认可的汽车产品认证机构负责进行具体认证工作，并颁发“机动车辆和挂车车型确认书”。

2008年1月1日起，俄罗斯全面实行欧Ⅲ认证标准，并增加了许多认证项目。2010年起俄罗斯采用欧Ⅳ标准，但欧Ⅳ标准主要针对进口汽车，国内生产的汽车无需达到即可在俄罗斯国内销售。此外，俄罗斯整车认证的检验项目从2007年的18项逐步增加到2008年的55项，包括在正面撞车时保护司机和乘客安全的标准（R94），在侧面撞车时保护司机和乘客安全的标准（R95），汽车报警系统标准（R97），客车的一般安全要求标准（R107），汽车装备压缩天然气标准（R110），轮胎的噪声标准（R117），速度限制装置标准（R89），液罐车防翻车的稳定性标准（R111），蓄电池电动车的要求标准（R100），危险货物运输车标准（R105）等。

向俄罗斯出口的车辆必须经过俄官方指定机构认证，但认证时间长、认证费用高、认证的有效期短。俄罗斯对车辆底盘认证需6个月，对车身认证需3个月，两种零配件的认证时间总共达9个月，而认证的有效期只有4个月，造成企业每一笔交易都需要重新认证。

俄罗斯联邦海关署建立了专门的汽车资料库，内容是俄罗斯进口汽车的全部型号，包括符合环保标准和不符合环保标准的各种型号，以便进口汽车办
理通关手续时查询。

自2014年1月1日起俄罗斯进口汽车环保标准需达到欧V，否则俄罗斯海关将不予发放交通工具证，无法在道路交通管理局上牌，车主必须缴纳进口关税。2013年12月31日以前进口并已得到交通工具证的汽车可以继续办理手续。

(2) 车辆认证的基本程序

申请方应首先明确办理认证车辆的种类及应达到的标准，起草简要的技术说明，并向认证机构递交申请。认证机构收到申请后15日内做出是否同意进行认证的决定。如同意，申请方应向试验室提供所需数量的产品样车。在确认技术说明的完整性和准确性，以及证明所提供样车与技术说明相符后，受理申请的试验室开始认证工作，必要时也可邀请制造商参与。

如果试验获得通过，试验室将试验报告及技术说明转交给认证机构或者申请方，再由认证机构做出向申请方发放俄罗斯品质合格证书的决定，或由行政机关根据联合国欧洲经济委员会规章做出发放《车辆结构型号正式确认通知书》的决定。通常情况下，品质合格证书的有效期不超过三年。如认证机构同意延长其有效期，则发放新的有效期为三年的品质合格证书。

领取车辆型号批准书时，申请方需向认证机构提出申请，并附车辆的简要技术说明。根据对申请方所提交文件的鉴定结论，或依据试验室出具的结论，在证明制造商具备生产试验样车条件的基础上，认证机构起草车辆型号批准书的决定，并列明其有效期。车辆型号批准书由行政机关发放，其有效期不超过三年。有关车辆型号批准书的发放信息由政府统一登记，并通报俄罗斯内务部国家汽车监察局。只有获得车辆型号批准书，才能将进口车辆运入俄罗斯境内。

在俄罗斯认证系统内发放车辆型号批准证书时，对于在1958年日内瓦协议框架内以联合国欧洲经济委员会规章为依据、由外国行政机构发放的尚在生效的《关于车辆结构型号正式确认通知书》，必须予以承认。认证机构对于在其他地区或国家认证体系内获得的品质合格证书及其他产品品质证明文件可选择性予以承认。在俄罗斯联邦境内生产的俄产车辆出厂证明等效于“车辆型号批准证书”。

(3) 小批量进口车辆的特殊认证程序

小批量进口车辆是指一个日历年度内，由国外生产商通过供应商网络运入俄罗斯境内的一个类别、一个型号车辆的规定数量。针对小批量进口车辆
的强制性技术要求比较宽松。对所申请系列（批量）车辆发放的“车辆型号批准书”是证明车辆结构安全性的文件。

(4) 针对车辆的环保要求

2005 年 10 月 12 日，俄罗斯政府第 609 号决议批准了《关于对俄联邦境内行驶的汽车有害（污染）物质排放的要求》。根据此项规定，自 2006 年 4 月 22 日起，任何一辆在俄罗斯联邦境内行驶的汽车，其有害物质（一氧化碳，碳氢化合物，氧化氮和分散粒子）的排放量应不低于欧洲 II 号排放控制水平。此项规定适用于在俄境内新生产的以及运入俄罗斯境内的所有汽车。该项技术规定对环保标准的要求逐步严格，自 2008 年 1 月 1 日起，汽车的环保标准不应低于欧洲 III 号排放控制水平，自 2010 年 1 月 1 日起，不应低于欧洲 IV 号排放控制水平。

此外，自 2006 年 4 月 22 日起，俄罗斯境内的汽车生产企业或者放行新车的海关，都必须填写含有汽车环保等级的新式汽车证书。对于已经在俄罗斯境内行驶的汽车（包括进口汽车），不要求环保等级认证。但 2006 年 4 月 22 日以后运入俄罗斯境内的旧车必须在俄罗斯技术监督署设立的任一认证机构领取品质合格证书。

(5) 进口车辆的管理

汽车不属于俄罗斯的许可证配额管理商品，进口车辆在通过认证并取得车辆型号批准书后，便归入一般商品，任何公司只要公司章程允许，皆可从事汽车外贸业务。

俄罗斯对商用车的进口管理比小轿车更为宽松，没有报关地点的限制，也不征收消费税，只征收进口关税和增值税。俄罗斯采用本国制定的外贸活动商品目录，与国际标准 HS 编码系统不完全接轨。按照国内对商用车辆的划分原则，俄罗斯对该类车辆的进口关税大致分为 5%、10%、15%、20% 四档，增值税的统一税率为 18%。

根据与美国达成的协议，俄罗斯在加入 WTO 后的 7 年内外国汽车进口关税从 25% 下降到 15%。降低关税为外国生产商提供了便利，一方面，外国生产商可在俄罗斯组装汽车销往欧洲；另一方面，俄进口汽车的比重也会增加。

根据相关协议，自俄罗斯正式加入世贸组织之日起，需要将新轿车进口关税从 30% 降至 25%，并保持 3 年不变；从第四年开始每年降低 2.5 个百分点，直到 2019 年夏天将关税降低至 15% 的水平。与此同时，自 2012 年起俄罗斯
二手车（3—7 年车龄）的进口关税从 35%降至 25%，并保持 5 年不变；5 年后，该税率要在随后两年内降至 20%。

俄罗斯进口汽车的关税有从价税和从量税两种，这 两种税在俄罗斯正式完成入世程序后分阶段下调或取消。根据入世协议，新的乘用车从价税入世后立即降至 25%，这一水平将保持 3 年，从 2015 年起，每年下降 2.5%，到 2019 年降至 15%。新的商用车进口税率入世后降至 10%，3 年后再降 5%。对于载重汽车，载重量为 5—20 吨的汽车进口关税从 25%降至 15%，5 年以下车龄的二手车关税从 44%降至 10%，5—7 年车龄从 123%降至 10%，7 年以上车龄从 205%降至 115%。超过 20 吨的自卸车，关税立即从 25%降至 10%，2015 年降至 5%。超过 20 吨的载重汽车，从 25%降至 10%，到 2015 年降至 5%。大巴车的关税从 20%—25%降至 15%，到 2015 年降至 10%。

目前，俄罗斯汽车售价中税费和关税占比约为 50%，出厂价约占 35%，剩余部分为代理商和分销商利润。关税不是决定俄罗斯进口汽车售价的唯一因素，通货膨胀率、代理商利润率和市场需求等因素都将显著影响销售价格。此外，由于俄罗斯加入世贸组织后降税时限长达 7 年，这些因素都决定了短期内俄罗斯汽车价格和进口量不会发生重大转变。不过，在关税过渡期后，俄罗斯汽车工业将面临十分严峻的挑战。

从 2011 年 7 月 1 日起，俄罗斯、哈萨克斯坦和白俄罗斯已经建立起关税同盟区，包括汽车等各种商品在三国境内免税自由流通。2012 年，三国在关税同盟基础上进一步发展为统一经济空间。未来吉尔吉斯斯坦、塔吉克斯坦也有望加入关税同盟及统一经济空间。这些国家的工资水平低，对外国投资更加渴望，避开俄为保护国内汽车工业而开出的严苛条件，曲线进入俄市场，不失为一个明智的选择。

2. 汽车产业投资制度框架

1998 年，时任俄罗斯总统叶利钦签署了《关于吸引外资发展国家汽车工业的补充措施》，鼓励外国投资者与俄罗斯汽车厂建立合资企业，要求投资额不少于 2.5 亿美元，投资期限为 5 年，5 年内国产化率要达到 50%。作为回报，俄罗斯允许合资企业建立自由经济区，项目实施期内免交增值税，设备及配件免征海关关税。为增大股比，要求俄方企业尽量采用非直接投资方式，即以厂房和设备进行投资，充分发挥现有资产的效益。

2004 年，普京政府出台了俄罗斯 IA1 工业组装计划，鼓励外资企业在俄新建工厂，最低产能为 25 000 辆。
2005 年 5 月，俄罗斯政府原则通过了《2005—2008 年汽车工业中期发展计划》，规定到 2009 年前，在俄罗斯境内至少应有 6 家外国汽车大型组装厂投产，主要用于吸引外资，由外国公司控股。

2009 年，梅德韦杰夫政府推出俄罗斯 IA2 工业组装计划，从强调汽车本国化转变为本土化，要求提高外资品牌在俄工厂的本土化率。该计划规定外资公司可以与俄罗斯政府签订 8 年的投资计划（不超过 2020 年 12 月 31 日），其中要求产能为 30—35 万辆，新工厂必须在开始建设后 36—48 个月内投产，同时在 36—48 个月内投产。随后，发动机和动力总成的本地化率每年递增，对在俄罗斯建立的 SKD 工厂，在前 36 个月给予核定产能 5％的免税进口套件。该计划还允许外资公司与本国企业形成战略联盟，但要求外资公司必须给予本国企业同平台的产品并确保原有品牌销售，同时要求外资公司在俄罗斯建立一定规模的研发中心。

为了推动本地化生产，俄罗斯 2010 年 12 月出台新的汽车工业组装协议（166 号法令），新规要求新建的合资工厂在 3 年后年产量达到 35 万辆（此前已签署协议的合资工厂 4 年后年产量达到 30 万辆），6 年后汽车零部件国产化率不得低于 60％。符合条件的外国公司免税进口部分汽车零部件。如企业不愿按新规组装汽车，将全额交付汽车零部件进口关税。如按新规组装汽车，生产外国品牌汽车的企业最晚必须于 2011 年 2 月底前重新签署合同。目前，俄罗斯已与大众、尼桑、奔驰、福特和通用等外国汽车生产商签署了新的工业组装协议，投资总额将超过 3000 亿卢布。

（三）欧盟

1. 汽车产品准入制度框架

（1）欧盟汽车产品型式批准制度

A. 汽车技术指令体系

欧盟对汽车行业实施统一的汽车型式批准制度，所依据的主要技术基础是欧洲经济共同体（EEC）/欧洲共同体（EC）汽车技术指令体系。欧盟汽车产品技术指令的制定依据是国家经济安全、环境保护、能源节约等。以上技术指标是根据 EEC 基本法律《罗马条约》（1957 年）和《罗马条约》修正案《马斯特里赫特条约》（1991 年）。

起初，欧盟的 EEC/EC 指令和汽车产品型式批准仅仅涉及零部件和系统，而欧盟建立统一的整车型式批准制度（ECWVTA）是从 20 世纪 70 年代初
开始的。1998年1月1日起，欧盟对M1，即座位数不超过9座的载客车类车辆，以及防弹车、殡仪车、救护车和旅居车等特种车，这些车是M1车辆改装而成的，欧盟的成员国的整车型式批准强制实施统一。这一技术指令运行了10余年，推进了管理汽车的市场准入和汽车业的技术进步，并且逐渐成为全球汽车型式认证的典范。

B. 欧盟整车型式批准制度的修订发展

欧盟于2009年4月29日开始执行2007/46/EC指令。这一指令从原有的认证范围M1类车进行了拓展，从而包括了M2（汽车的座位数量大于9，且载客总质量不大于5000kg）、M3（汽车的座位数量大于9，且载客总质量大于5000kg）、N（至少有4个车轮的货运机动车）和O（挂车）类车。

汽车产品的型式批准制度包括了整车和零部件与系统的型式批准，其中整车的分类是分成汽车产品（M、N、O类车辆）、摩托车和轻便摩托车产品（L类车辆）、轮式农林拖拉机产品（T类车辆）。对于这三类整车产品，欧盟分别执行了不同的技术指标（见表7）。

表7 欧盟M、N、O、L和T类车辆整车型式批准框架技术指令

<table>
<thead>
<tr>
<th>车辆产品种类</th>
<th>整车型式批准框架性技术指令（基础指令）</th>
<th>指令修订本</th>
<th>实施情况</th>
</tr>
</thead>
<tbody>
<tr>
<td>L类车辆</td>
<td>92/61/EEC《摩托车型式批准》</td>
<td>从2002/24/EC-2005/30/EC，历经3次修订</td>
<td>1999年，欧盟对摩托车产品（2轮及3轮）强制实施统一的整车型式批准。</td>
</tr>
<tr>
<td>车辆产品种类</td>
<td>整车形式批准框架性技术指令（基础指令）</td>
<td>指令修订本</td>
<td>实施情况</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------------------------</td>
<td>-------------</td>
<td>---------</td>
</tr>
</tbody>
</table>

资料来源：钱春雷等：《欧盟汽车型式批准制度综述》，《质量与标准化》2013年第5期。

法规 2007/46/EC 的出台使得欧盟范围内的汽车认证标准得到统一并实现了相互承认。欧盟对所有汽车产品（M、N、O类）车辆采取统一的整车型式批准标准，所有这些类车辆在欧盟 27 个成员国的任何一国获得承认，也可以在其他欧盟国家得到承认，无需再进行其他的认证或批准。

（EC）371/2010 进一步规定了欧盟的车辆型式批准流程，包括技术服务机构的评价规程、试验报告的格式和生产一致性规程等。新规定对原有规定 2007/46/EC 做了进一步完善，包括对企业和自行进行认证试验和虚拟试验，具体做法如下：

第一，自行试验。

企业可以对 17 个单项的汽车零部件和系统 EEC/EC 的标准自行进行试验，在这些单项项目的型式批准工作中，符合标准的企业可以被欧盟成员国批准车辆行驶的主管机构认定为技术服务机构，从而大大扩展了欧盟汽车型式批准制度中技术服务机构的范围。（EC）371/2010 明确界定了评价技术服务机构的规则程序以及应该具备的条件，要求申请成为技术服务机构的企业满足标准 EN ISO/IEC17025：2005（《检测和校准实验室能力的通用要求》）。认定为技术服务机构的企业，既可以使用自身的试验设施进行欧盟单项目
令的17项试验，也可以交给第三方机构来做试验，并对监督试验。如果企业是技术服务机构，作为技术服务机构的企业可以直接将试验报告和相关结论报送型式批准主管机关。企业可作为技术服务机构进行试验的17项单项欧盟技术指令项目及内容（见表8）。

表8 企业可作为技术服务机构的欧盟单项技术指令

<table>
<thead>
<tr>
<th>序号</th>
<th>单项技术指令号</th>
<th>涉及的内容和限制</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>70/222/EEC</td>
<td>后牌照板空间</td>
</tr>
<tr>
<td>2</td>
<td>70/388/EEC</td>
<td>音响报警装置</td>
</tr>
<tr>
<td>3</td>
<td>76/114/EEC</td>
<td>法定铭牌</td>
</tr>
<tr>
<td>4</td>
<td>76/756/EEC</td>
<td>照明和灯光信号装置的安装</td>
</tr>
<tr>
<td>5</td>
<td>77/389/EEC</td>
<td>牵引挂钩</td>
</tr>
<tr>
<td>6</td>
<td>78/316/EEC</td>
<td>控制件、信号装置和指示器的识别</td>
</tr>
<tr>
<td>7</td>
<td>78/317/EEC</td>
<td>除霜和除雾</td>
</tr>
<tr>
<td>8</td>
<td>78/318/EEC</td>
<td>刮刷和清洗</td>
</tr>
<tr>
<td>9</td>
<td>2001/56/EC</td>
<td>加热系统 有关车辆 LPG 加热系统安装要求的附件8除外</td>
</tr>
<tr>
<td>10</td>
<td>78/549/EEC</td>
<td>护轮板</td>
</tr>
<tr>
<td>11</td>
<td>92/21/EEC</td>
<td>质量和尺寸（轿车）</td>
</tr>
<tr>
<td>12</td>
<td>92/22/EEC</td>
<td>安全玻璃 仅限于 ECE R43 附件21（安全玻璃在车辆上的安装）</td>
</tr>
<tr>
<td>13</td>
<td>92/23/EEC</td>
<td>轮胎</td>
</tr>
<tr>
<td>14</td>
<td>97/27/EC</td>
<td>质量和尺寸（M1类以外的车辆）</td>
</tr>
<tr>
<td>15</td>
<td>92/114/EEC</td>
<td>驾驶室外部凸出物</td>
</tr>
<tr>
<td>16</td>
<td>94/20/EC</td>
<td>连接装置 仅限于附件5（机械连接装置）和附件7（机械连接装置在车辆上的安装要求），附件5仅限于第1—8条</td>
</tr>
<tr>
<td>17</td>
<td>2006/40/EC</td>
<td>空调系统</td>
</tr>
</tbody>
</table>

第二，虚拟试验。

在计算机辅助技术，尤其在计算机辅助设计日益广泛的运用于汽车行业
这一背景下，型式批准过程中，通过计算机模拟和计算来验证车辆、系统和零部件是否满足技术法规的要求已经成为新的发展趋势。2007/46/EC 已经开始在欧盟汽车产品型式批准制度中引入这一新的试验模式，而 (EC) 371/2010 则进行了具体的贯彻和实施，确定了 15 项单项汽车零部件和系统的 EEC/EC 技术指令可以进行虚拟试验，并规定了相关的条件（见表 9）。

<table>
<thead>
<tr>
<th>序号</th>
<th>单项技术指令项目</th>
<th>适用的附件和段落</th>
<th>特定条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>70/221/EEC 燃油箱和后防护装置</td>
<td>附件 2(后下部防护) 第 5.4.5 条</td>
<td>后部防护装置的规格及位置要求除外</td>
</tr>
<tr>
<td>2</td>
<td>70/387/EEC 车门及其铰链</td>
<td>附件 2 第 4.3 条</td>
<td>钢制车门规格及位置要求除外</td>
</tr>
<tr>
<td>3</td>
<td>2003/97/EC 后视野</td>
<td>附件 3 第 3、4、5 段中的所有条款</td>
<td>后视镜特定的视野要求除外</td>
</tr>
<tr>
<td>4</td>
<td>74/60/EEC 内饰件</td>
<td>附件 1 第 5 段 (技术规范) 中所有条款</td>
<td>所有曲率半径的测量、所有外部凸出物；检测是否满足规定而必须施加力的要求除外</td>
</tr>
<tr>
<td></td>
<td></td>
<td>附件 2</td>
<td>外部碰撞区的确定</td>
</tr>
<tr>
<td>5</td>
<td>74/483/EEC 外部凸出物</td>
<td>附件 1 第 5 段 (通用技术规范) 和第 6 段 (特殊技术规范) 中所有条款</td>
<td>所有曲率半径的测量、所有外部凸出物；检测是否满足规定而必须施加力的要求除外</td>
</tr>
<tr>
<td>6</td>
<td>76/756/EEC 照明和灯光信号装置的安装</td>
<td>ECE R48 第 6 段 (个性技术规范)</td>
<td>第 6.22.9.2.2 条 (验证 AFS 的自动操作不会产生不适) 中的试验规范驾驶应在真实车辆上进行</td>
</tr>
<tr>
<td>7</td>
<td>77/389/EEC 牵引挂钩</td>
<td>附件 2 第 2 段</td>
<td>仅适用第 5.1.2 条中刮刷面积的测量</td>
</tr>
<tr>
<td>8</td>
<td>77/649/EEC 前视野</td>
<td>附件 1 第 5 段 (技术规范)</td>
<td>仅适用第 2.8 段中的测量</td>
</tr>
<tr>
<td>9</td>
<td>78/318/EEC 刮刷和清洗</td>
<td>附件 1</td>
<td>抗水平力和弯曲变形测量</td>
</tr>
<tr>
<td>10</td>
<td>78/549/EEC 护轮板</td>
<td>附件 1 第 2 段 (特殊要求)</td>
<td>仅适用第 5.1.2 条中刮刷面积的测量</td>
</tr>
<tr>
<td>11</td>
<td>89/297/EEC 侧面防护</td>
<td>附件 1 第 2.8 段</td>
<td>抗水平力和弯曲变形测量</td>
</tr>
<tr>
<td>12</td>
<td>92/114/EEC 驾驶室外部凸出物</td>
<td>附件 1 第 4 段 (特定要求) 中所有条款</td>
<td>所有曲率半径的测量、所有外部凸出物；检测是否满足规定而必须施加力的要求除外</td>
</tr>
</tbody>
</table>
二、主要国家汽车制造业准入制度

（续表）

<table>
<thead>
<tr>
<th>序号</th>
<th>单项技术指令项目</th>
<th>适用的附件和段落</th>
<th>特定条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>94/20/EC 连接装置</td>
<td>附件 5 对机械连接装置的要求，附件 6 第 1.1 条</td>
<td>简单设计的机械连接件的强度试验可以由虚拟试验代替，仅适用于第 4.5.1 条（强度试验）、第 4.5.2 条（抗挠曲变形）、第 4.5.3 条（抗弯力矩）</td>
</tr>
<tr>
<td>14</td>
<td>2001/85/EC 大客车和长途客车</td>
<td>附件 1</td>
<td>第 7.4.5 条在附件 1 的附录中规定的条件下进行的稳定试验</td>
</tr>
<tr>
<td></td>
<td></td>
<td>附件 4 上部结构强度</td>
<td>附录 4 通过计算对上部结构强度的验证</td>
</tr>
<tr>
<td>15</td>
<td>2000/40/EC 前下部防护</td>
<td>ECE R93 附件 5 第 3 段</td>
<td>抗水平力和弯曲变形测量</td>
</tr>
</tbody>
</table>

2012年12月10日，欧盟发布法规(EU)NO1229/2012，修订了2007/46/EC 附录 V 的型式要求。修订内容主要涉及一般安全法规(EC)661/2009 的变化，对小批量型式批准的要求进行简化，在保证安全和满足环保标准高要求的前提下，降低制造商的认证成本。法规(EU)NO1229/2012 对于 M1 类车辆的欧盟小批量型式批准要求做出了更新，并且要求2012年11月1日前获取的欧盟小批量批准证书在2016年10月31日失效。在小批量型式批准(NSSTA)方面，M1 类车辆允许最多每年的75辆增加至100辆；N1 类车辆的国家小批量型式批准数量限制，从原有的500辆减少至2016年11月1日的250辆。此外，N1 类车辆也开始接受欧盟小批量型式批准(ECSSTA)。类似于 M1 类每年1000辆，N1 类车在此程序下也有相应的数量限制。

（2）安全法规要求

A. 高级紧急制动系统(AEBS)

在一般安全法规(EC)661/2009 中，对高级紧急制动系统在安装及相关型式批准方面的基本要求做出了规定。此后，欧盟于2012年4月16日发布法规(EU)NO347/2012，进一步规定了 M2、M3、N2 及 N3 类车辆的技术要求、测试项目和测试程序等。

法规指出，基于制动和轴技术的复杂性，高级紧急制动系统的引入将分为两个阶段：
第一阶段：对所有 M3、N3 类车辆和特定 N2 类车辆，即最大质量超过 8 吨，装备气压或气顶油制动系统、气压后桥悬架系统的碰撞警报和紧急制动要求进行了规定，并设定了初始通过与否的限值。

第二阶段：进一步加严了第一阶段的车辆限值要求。同时，法规对装备液压制动系统和非气压后桥悬架系统的车辆又给出了追加要求，包括 M2 类车辆和最大总质量不超过 8 吨的 N2 类，并将在正式强制 2 年前出台具体测试条件和通过限值。

法规的实施日期如下：2013 年 11 月 1 日起，对于不满足除第二阶段外此法规要求的，主管机构可以拒绝新车型的欧盟型式批准或国家型式批准。2015 年 11 月 1 日起，对于不满足除第二阶段外此法规要求的，新车合格证将失效。2016 年 11 月 1 日起，对于不满足此法规所有要求的，主管机构可以拒绝新车型的欧盟型式批准或国家型式批准。2018 年 11 月 1 日起，对于不满足此法规所有要求的，新车合格证将不再有效。

B. 车道偏离报警系统 (LDWS)

一般安全法规 (EC) NO661/2009 规定，M2、M3、N2 和 N3 类车辆进行型式批准申请时，必须满足安装车道偏离报警系统的基本要求。2012 年 4 月 23 日发布的法规 (EU) NO351/2012 进一步对具体的技术要求、测试项目和程序做了规定。法规还规定了豁免的车型，即：最大质量在 3.5—8.0 吨之间的 N2 类半挂牵引车，A 类、I 类及 II 类的 M2 和 M3 类车辆，A 类、I 类及 II 类的 M3 类铰接式客车，某些特殊用途车辆，越野车以及 3 轴以上车辆。

生产商可以按法规附录 1 的第一部分进行申请，如果满足附录 2 的要求，即可获批。附录 1 第二部分列出了批准证书内容，包括 1.1 条款关于车道偏离报警系统的简要描述和 4—4.9 条款关于车道偏离报警系统的测试项目信息。

(3) 排放法规要求

A. 轻型车排放法规 (EC)

2007 年的法规 NO715/2007 规定，装备点燃式发动机的车辆在申请欧 V1 排放水平的型式批准时，必须确定颗粒物数目排放水平。

2012 年 5 月 29 日，欧盟发布的新法规 (EU) NO459/2012 规定，点燃式发动机车辆的颗粒物数目排放，将采用为柴油车开发的测试程序；相关颗粒物数
目排放限值也与柴油车一样；相关颗粒物排放水平要求将首先适用于汽油直喷发动机，并且将采用与美国加州 CARB 法规相似的低限值（除颗粒物外），但前 3 年的限值会有所放宽。此外，考虑到特定的技术困难，OBD 低限值在 CO、NMHC 和颗粒物质量方面的放宽要求甚至将在后续 3 年继续有效。

B. 重型车排放

2012 年 5 月 29 日，欧盟发布法规(EU)NO64/2012，在法规(EC)NO595/2009 和 (EU)NO582/2011 基础上进行了修订，主要内容是对相关重型车欧 V1 排放水平要求做了改进。为了适应多阶段车辆、改装车以及小产量车辆等因素，法规将采用车辆维修信息访问的特定程序。对于可替代燃料汽车，为便于设计和制造这些设备，对相关车辆设备型式批准可行的将设置 OBD 和车辆维修信息访问。对于那些旧车型已装配、新车型将继续装配的设备，为了减轻这些车辆维修信息访问的条款给企业带来的负担，法规将采取一个中间措施。同时，对限速装置和记录设备的控制单元进行程序调试的相关信息，从车辆维修信息访问的条款中排除。生产商必须将必要及时在网站上以标准格式提供，并提供培训给授权独立经销商。对于多阶段制成车辆，对于最后环节的制造，必须提供所有制造阶段的相关信息。只有接收到制造商提交的车辆 OBD 及维修信息访问的证书情况下，批准机构才能批准相关型式。批准机构可以在任何时候核对此证书是否符合法规(EC)NO595/2009 及 (EU)NO64/2012 的要求。2016 年 6 月 30 日前，新型车继续装配的设备可以豁免重新调试 ECU 程序的强制要求。

C. 氢燃料车辆

2012 年 7 月 12 日，法规(EU)NO630/2012 对法规(EC)NO692/2008(欧 V 及欧 V1 排放水平)进行修订，增加了关于氢燃料及氢气和天然气混合燃料车辆的型式批准要求，并纳入电驱动车辆进行型式批准所需的特定信息要求。氢气和天然气混合燃料车辆有主要为 CH、CO、NO 及颗粒物的特定的排放物。为此，法规需要修改这些排放物的计算公式。最后，制造商提交给型式批准机构的申请文件，必须包含氢气、氢气混合燃料和电动车辆的相关信息。

2013 年，一项要求在欧盟出售的新车到 2020 年平均每公里二氧化碳排放量由现在的 130 克减少到 95 克的法律草案得到欧洲议会的通过。此外，草案也同时出台了补救措施，涉及那些计划生产二氧化碳排放量超标车的欧盟厂商，要求是这些厂商必须同时生产超清洁汽车，即达到每公里二氧化碳排放量
不足50克的标准。具体规定如下：从2013年到2015年，每生产1辆超清洁汽车，最多可生产3.5辆超标车；从2016年到2023年，可生产1.5辆超标车；从2024年以后，可生产1辆超标车。同时，草案对年产量在1000辆以下的汽车制造商做出了豁免规定。

（4）其他法规要求

A. 轮胎法规要求

2012年7月20日，法规（EU）NO52/2012规定，自2012年11月1日至2020年11月1日，UNECE法规R30、R54、R64及R117将分阶段强制于C1、C2及C3类轮胎的型式批准、销售和使用。

同时，该法规进一步明确了法规（EC）NO661/2009附录IV的相关内容，如在机动车及挂车制动方面应用R13法规，在乘用车（M1类）制动方面应用R13H法规，在防火方面（液态燃油箱）应用R34法规，在车辆结合用机械耦合设备方面应用R55法规。

在胎压监测系统（TPMS）方面，法规进一步明确：自2012年11月1日起，对M1类新型式车辆强制实施胎压监测系统的型式批准要求；自2014年11月1日起，强制要求用于注册、销售和使用的新M1类车辆必须安装胎压监测系统。

B. 换挡指示器（GSI）

2012年1月24日，欧盟发布法规（EU）NO65/2012，就换挡指示器方面对法规（EC）NO661/2009进行补充，并修订框架指令2007/46/ECO法规（EC）NO661/2009规定采用手动变速器、参考质量小于2610kg的M1类车辆，必须安装换挡指示器（GSI）。此法规明确了GSI的特定测试程序和技术要求。

GSI的效果将会通过如下方式进行监控：车辆噪声以及驾驶员耳边噪声测试；制造商声明值；GSI外观及相关数据，包括模型数据，排放和油耗数据等；GSI照片以及使用手册中GSI部分的复印页。

C. 车辆入口与操作

法规（EC）NO661/2009撤销了70/387/EEC及75/443/EEC指令，对出了入口踏板、把柄、脚踏板和倒车装置的基础要求做出了规定。这些原有指令关于入口踏板、把柄、脚踏板和倒车装置的要求将被此法规覆盖，其他一些要求已经被法规UNECER11和R39覆盖。2012年2月15日，欧盟在此基础上发布法规（EU）NO130/2012，进一步明确了车辆入口与操作项目在型式批准上的特定程序、测试和相关技术要求。适用范围上与原有指令70/387/EEC
以及 75/443/EEC 一致，都是适用于 M 类、N 类车辆。

D. 质量与尺寸

这个法规将在质量尺寸方面与指令 96/53/EC 保持协调性，允许欧盟成员国具备一定弹性，以批准在质量尺寸方面不满足成员国法规要求的车辆型式批准申请，并对超出欧盟法规质量尺寸要求的车辆颁发小批量型式批准。

2. 汽车产业投资制度框架

欧盟的外商投资制度适用于所有产业，对汽车产业无特殊规定。2009 年 12 月《里斯本条约》生效之后，外国直接投资正式纳入欧盟共同贸易政策。欧盟开始执行统一的外资政策并制定相关法律，可代表其成员对外展开投资协定谈判，内容包括投资市场准入和投资保护等，但各成员国仍然可以根据自身情况制定和实施有关投资促进的政策。

(四) 美国

1. 汽车产品准入制度框架

美国在汽车产品的市场准入管理上制定了十分详尽而完善的法规体系。政府从维护整个社会和公众利益出发，对汽车产品的设计和制造专门立法，然后授权主管部门制定有关汽车安全、环保、防盗和节能等方面的技术法规，并按照汽车技术法规对汽车产品实施法制化的管理制度，以实现政府对汽车产品在安全、环保、防盗和节能等方面的有效控制。

具体来说，依据《国家交通及机动车安全法》、《机动运载车法》、《机动车情报和成本节约法》、《机动车防盗法实施令》等相关法律授权，美国交通部(DOT)国家公路交通安全管理局(NHTSA)制定了与机动车辆结构及性能有关的联邦机动车安全标准(FMVSS)和美国汽车燃料经济性法规。同时，依据《噪声控制法》及《大气污染防治法》等相关法律授权，美国环境保护署(EPA)制定并实施汽车排放和噪声方面的技术法规(EPA 规则)。这样 FMVSS、EPA 规则、联邦汽车燃料经济性标准法规共同构成了美国汽车技术法规体系。

美国汽车法规体系与欧洲的有所不同。在欧洲，每一份汽车技术法规或技术指令都包括技术内容和相应的管理性内容，具有相对的独立性，可以单独使用，而美国将技术内容和管理性内容分开。同时，美国联邦政府在对汽车产
品的管理上，也平行地分为两个部分：汽车安全、节能、防盗等方面的管理主要由美国交通部公路交通安全管理局（DOT/NHTSA）负责；汽车环保等方面的管理主要由美国环境保护署（EPA）负责。企业进入美国市场时，从新车准入到后续的监督管理的整个过程，都需要分头对应这两个管理部门。针对美国汽车法规本身的体系特点，可将美国联邦汽车技术法规分为以下 8 类：

（1）美国联邦机动车安全标准

1966年，美国颁布实施《国家交通及机动车安全法》，授权DOT对乘用车、多用途乘用车、载货车、挂车、大客车、摩托车及这些车辆的装备和部件制定并实施《联邦机动车安全标准》（FMVSS）。任何车辆或装备部件如果与FMVSS不符，都不得为销售目的而生产，不得销售或引入美国州际商业系统，不得进口。根据《国家交通及机动车安全法》最新修订，对违反此法要求的制造商或个人，美国地区法院最高可处以1500万美元罚款；对造成人员死亡或严重身体伤害的机动车或装备安全缺陷隐瞒不报，或制造虚假报告的制造商将追究刑事责任，最高处以15年有期徒刑。这份由美国交通部公路交通安全管理局（DOT/NHTSA）具体制定、实施的《联邦机动车安全标准》，是美国汽车产品市场准入的主要要求，都被收录在《联邦法规集》（CFR）第49卷第571部分中。目前，FMVSS法规共计五大类、64项。

A. FMVSS 100 系列——避免车辆交通事故，及汽车主动安全，共计28项。2010年美国NHTSA分别对其中的FMVSS 118《动力操纵车窗系统》和FMVSS 119《车辆（不包括轿车）用的充气轮胎》进行了修订，分别要求具有一次按键就可使车窗完全自动关闭的车窗装备自动返回系统（ARS），和对总重超过4536千克的载货车、大客车使用的充气轮胎提出更严格的耐久试验要求，对几个重型载荷范围内的轮胎增加新的高速试验，此外要求在轮胎侧壁必须表示轮胎的最大速度级别。2011年8月1日，对FMVSS121进行修改，对于重型车气压制动控制系统，减少制动距离20—30%；2011年9月1日，对FMVSS126“ESC电子稳定控制系统”进行修改。

B. FMVSS 200 系列——发生事故时减少驾驶员及乘员伤害，及汽车被动安全，共计27项。2010年，美国NHTSA对其中的FMVSS 208《乘员碰撞保护》进行了修订，要求长途大客车上每个乘员，包括驾驶员（及大型校车驾驶员）座位上必须安装三点式安全带。同年为降低在车辆侧面碰撞和倾翻事故中，乘员被弹出的危险性，NHTSA增添了一项新法规，即FMVSS 226《降低弹出危险性》，该法规适用于车辆总重不超过10000磅的车辆前三排座椅旁边
侧面车窗，规定了相应的性能指标要求和试验方法。

C. FMVSS 300 系列——防止火灾，共 5 项。2010 年 6 月，为促进燃料电池车辆在美国的使用，NHTSA 对 FMVSS305（电动车辆—电解液溅出及电击保护）进行了修订，使之与 SAE J1766-2005（电动和混合电动车电池系统碰撞完整性的试验的推荐规程）协调一致。

D. FMVSS 400 系列——附属设施，共 3 项。

E. FMVSS 500 系列——低速汽车，共 1 项。

（2）美国与 FMVSS 配套的管理型汽车技术法规

FMVSS 中只有技术内容，如限制标准、试验方法等的技术法规，不包括管理性内容。为保证 FMVSS 的制修订工作和有效实施，美国 NHTSA 还专门制定了一系列的管理性技术法规，分别被收录在《联邦法规集》(CFR)第 49 卷第 510、523、529、551—553、555、563—569、572、574—576、578、580—581、583、585、587—588、591—595 部分中。其内容涵盖信息收集权、车辆分类、多阶段车辆的制造、程序规则、申请制定有关法规、申请发布缺陷与不符命令、法规制定程序、对 FMVSS 的暂时豁免等多个方面。2010 年，NHTSA 对 CFR 第 49 卷第 575 部分《消费者信息法规》进行了修订，对于车辆总重不超过 10 000 磅的车辆，修改车辆信息标注，规定车辆要标明根据目前美国 NCAP 试验（包括前碰撞、侧碰撞和翻滚试验）得出的车辆总体安全级别。2010 年 9 月，NHTSA 与 EPA 联合发布通告，修改轿车和轻型载货柴油车燃油标识，以向消费者提供更多的车辆燃油经济性信息，如成本、对环境的影响等。同时，对车辆类型规定了汽车或柴油车辆、乙醇/汽油双燃料车辆、天然气车辆、混合动力车辆、电动车辆等不同标识式样。

（3）美国汽车安全技术法规的具体实施与汽车产品安全召回法规

美国联邦政府在汽车产品的准入管理上，主要实施“自我认证、强制召回”制度，即汽车制造厂商对其进入美国市场的产品自行负责，政府实施事后监督和抽查工作，对不符合要求的缺陷产品实施召回制度。在认证环节平行地分为两部分：汽车安全、节能、防盗方面的车辆安全认证（DOT 认证）；汽车环保方面的环保认证（EPA 认证）。此类法规也被收录于 CFR 第 49 卷中，分别列于第 554、556、557、573、577 和 579 部分。

A. 车辆安全认证

DOT 认证是美国交通部国家公路交通安全管理局（DOT/NHTSA）负责的关于机动车辆安全、节能、防盗方面的认证，即汽车制造商对是否满足美国
汽车安全法规（FMVSS）进行自我检验申报，由政府实施事后监督的认证制度。美国交通部国家公路交通安全管理局（DOT/NHTSA）下设车辆安全符合办公室（OVSC）和缺陷调查办公室（ODD），具体负责认证和召回事务。其具体的认证流程为：汽车厂家，指定代理人，向DOT递交联邦汽车安全标准符合性申请书并向DOT认可的签约实验室递交随机选择的样车→实验室向DOT/NHTSA下设的车辆安全符合办公室（OVSC）提交产品检测方案，经批准后开始进行检测，检测通过后DOT批准符合性申请→制造厂商自我认证认为其产品满足美国汽车安全法规标准后，即在车辆或装备上贴有证明其符合法规要求的标签或标志，该车辆或装备就可不经其他检验而进入市场→DOT每年随机对车辆及零部件进行抽查和监督，对问题车辆强制召回。

B. 环保认证

美国环境保护署（EPA）是美国车辆环保认证的主管部门，负责监控车辆排放与强制性标准的符合性。其大体认证流程为：汽车制造商向EPA提出认证申请，附说明书、技术参数、试验规程、试验报告的数据和资料，提交50000英里或1500小时耐久性试验的结构、排气试验车→EPA按发动机族分类选择样车→在EPA或厂家实验室进行试验→试验结构符合要求，通过EPA认证，官方公布/发放EPA认证标志。

在这两个认证环节中，厂商进行认证试验的频率都取决于厂家本身的质量控制水平和产品性能与法规要求之间的差距等。

C. 安全召回

美国交通部国家公路交通安全管理局（DOT/NHTSA）主管汽车产品安全问题，有权随时对汽车产品的自我认证进行监督抽查。DOT/NHTSA可在美国市场上随意购买一辆新车，并送交一独立实验室按美国汽车安全法规进行试验，如发现不符合法规要求，DOT/NHTSA将通知制造厂家，并要求其提供自我认证的资料进行审查，如果确定该车辆不符合法规要求，DOT/NHTSA将责令厂家立即停止该型式车辆的销售，并对该型式车辆强制实施召回，由厂商对不符合法规的缺陷进行纠正，全部费用由厂家承担，甚至还要负责事故赔偿，受到罚款。美国政府对自我认证的监督措施相当严厉。

(4) 美国汽车节能技术法规

根据《机动车情报和成本节约法》授权，美国DOT/NHTSA以法规形式制定了美国汽车燃油经济性标准，主要规定了制造厂商在各车型年内必须遵守的公司汽车平均燃料经济性指标，即各公司在各车型年内所生产的所有车
型的最高平均燃油经济性水平，简称 CAFE。这部分法规收录于 CFR 第 49 卷中。此外，美国 EPA 也根据《机动车情报和成本节约法》制定了一系列有关节能的汽车技术法规，主要规定燃料经济性的试验规程、计算规程、标识等方面的内容。这部分法规被收录于 CFR 第 40 卷第 600 部分。美国汽车燃油经济性标准同样采取自我认证的实施方式。

2010 年 5 月，NHTSA 和 EPA 联合发布最终法案，要求自 2012 年开始，到 2016 年，轿车、轻型载重货车、中型乘用车制造商应满足各年度的 CAFE 和 CO₂ 排放限值。目标是到 2016 年，EPA 在《清洁空气法》框架下，要求轻型车辆 CO₂ 平均排放量为 250 克/英里；而 NHTSA 以能源政策和保护法为框架，要求轻型车辆在 2016 年达到 34.1 mpg 的平均燃料经济性。法案同时对 NHTSA 和 EPA 所管辖的美国节能法规进行相应的修订。

(5) 美国汽车防盗技术法规

根据 1984 年美国发布《机动车辆防盗法实施令》，在美国《机动车辆信息和成本节约法》中增加了新的内容，即第六章：防盗。根据法律规定，为防止盗取机动车辆后非法拆解获取其零部件，要求乘用车及其主要的可更换零部件必须带有车辆识别代号 VIN；要求 DOT 完成旨在减少机动车辆盗窃的法规制定工作；要求保险公司有义务向美国联邦政府提供有关车辆被盗及被找回的情况记录。

从 1985 年开始，美国 DOT/NHTSA 在上述法律的授权下，对机动车辆防盗发布了一系列技术法规，分别收录于 CFR 第 49 卷第 541—544 部分。1992 年美国政府又公布《1992 年反轿车盗窃法》，严格对车辆防盗的法制化管理。该法规定拥有或开办“拆解厂”、拆解被盗车辆都将被联邦政府视为严重犯罪，将被处以严厉惩罚；要求建立全国性的机动车辆产权信息联网系统，使任何车辆购买者能通过此信息了解该车辆的真实来源和历史，避免买到被盗车辆。

1996 年美国国会修订《1992 年反轿车盗窃法》，将该法的具体执行部门由原来的美国交通部转交美国司法部执行。

(6) 美国汽车环保技术法规

根据美国《噪声控制法》和《清洁空气法》授权，EPA 制定有关汽车排放和噪声等方面的技术法规，主要收录在 CFR 第 40 卷第 86 部分中。这部分法规按照各种不同车型及不同时代的车辆分为 A-T，共 20 个不同的法规分部。

2010 年 5 月，在 NHTSA 和 EPA 联合发布轿车、轻型载重车、中型乘用
油耗与二氧化碳排放的新技术法规，对 CFR 第 40 卷第 86 部的 B 分部和 S 分部进行了相应的修订。

（7）美国汽车排放控制方面的管理性法规

同美国汽车安全技术法规一样，美国环境保护署（EPA）针对汽车的排放控制单独制定了一系列管理性技术法规，主要收录于 CFR 第 40 卷第 85 部分，共 25 个分部。2010 年 5 月和 9 月，NHTSA 和 EPA 分别联合对轿车、轻型载货车辆、中型乘用车的油耗、排放和燃油标识进行了修改。

（8）美国汽车噪声技术法规

目前，美国仅对中重型载货车和摩托车制定了噪声技术法规，相关内容收录于 CFR 第 40 卷第 205 部分，共 5 个分部。

（9）美国各州法规

除联邦政府管理外，各州政府也涉及汽车管理。其主要体现在：

A. 加州的排放法规比联邦法规更为严格；

B. 除实施召回制度外，还针对汽车产品质量保证制度制定并实施《柠檬法》，具体实施工作由各州政府负责；

C. 实施由各州政府负责的在用车控制和管理制度—I/M（检验和保养）制度。

2. 汽车产业投资制度框架

美国的外商投资制度适用于所有产业，对汽车产业无特殊规定。

（1）基本法规

美国规制外国投资的历史最早可追溯到第一次世界大战时期的《与敌贸易法案》，而美国的国家投资审查制度始于《1950 年国防产品法》。1988 年为应对日企收购风潮可能给国家安全带来的风险，美国国会通过了《埃克森-佛罗里奥法案》，由此美国外国投资安全审查制度得以建立。2007 年美国总统签署《2007 年外国投资与国家安全法》（Foreign Investment & National Security Act，FINSA），对外国投资审查和限制体系做了一系列完善和修正，进一步强化对外国投资和并购活动的审查和限制。首先，FINSA 加强对重要技术和基础设施交易的审查，明确要求对大型收购“重要基础设施”及与美国国家安全有关核心基础设施、核心技术及能源等成为审查的主要内容；其次，FINSA 加强对外国“国有企业”投资的审查，外国国有企业在美国并购受到严格限制；再次，FINSA 明确审查要考虑该外国政府与美国之间的外交一致性，在多边反恐、防止核扩散及出口限制方面的政策一致性，以及是否在地区范围
内对美国具有潜在军事威胁等；最后，FINSA 增强了总统和外国投资委员会
(Committee on Foreign Investment in United States, CFIUS)对外资审查的
权限。

对于外国投资者赴美从事绿地投资，美联邦政府一般不设外资审查程序，
地方政府依据项目性质、地点，可能会要求投资者申请特定许可，例如与环保
有关的空气排放许可。许可类型、名称会因所在州、郡不同而异，具体可通过
咨询各州商务、投资主管部门获取。

（2）监管主体

FINSA 规定由 CFIUS 负责美国相关外资审查工作。CFIUS 是根据 1975
年福特总统第 11858 号行政命令设立的，是一个跨部门的行政机构，职能是监
督和评估外国投资兼并、收购美国企业交易，并根据交易对美国国家安全的影
响程度展开初步审查或正式调查，提出建议，直至视情交由总统决定是否批准
交易。目前，CFIUS 由财政部牵头，财政部长担任委员会主席，其成员由外交部、
国防部、财政部、国家安全部、国家情报局等部长组成，总统也可视情况指
派其他部门领导参与。

（3）审查机制

CFIUS 审查范围明确限制在国家安全风险领域，侧重评估外国收购公司的
背景、被收购美企业的资产和客户性质以及交易本身可能对美国国家安全
造成的影响等。审查不考虑国家经济风险等经济因素。CFIUS 在审批过程
中具有一定裁量权。
三、主要国家扶持本国汽车制造业的实践

(一) 巴西

汽车工业是巴西的龙头工业和国民经济的重要支柱,从20世纪50年代开始,巴西就采取宽松的外资引进政策,开放汽车市场。目前巴西虽然没有自己的汽车品牌,但通过本土化的方式,巴西本土企业成功与多家大型汽车跨国企业合作。为了促进本国汽车行业的现代化,解决国内就业问题,增加政府财政收入,巴西政府积极鼓励外国车企到巴西进行投资。巴西《宪法》规定,所有在巴西境内的外国独资企业或合资企业均被视为“巴西民族工业”。其主要的优惠政策框架包括:给予外国投资者国民待遇;对外资给予税收优惠;外资企业在巴西境内生产的汽车,如向第三国出口,可向巴政府申请出口信贷和保险。

1. 财税政策

巴西政府对税收采取联邦、州和市的分级征收和管理,因此税收优惠和减免也只能在各自授权范围内,不能越级进行。但国家可在全国范围内对不同行业和地区进行税收减免。同时,巴西各州、市均有不同的税收优惠措施,包括以优惠条件提供生产所需的基础设(土地、厂房)和燃料,减免商品流通服务税,提供低息贷款等。巴西与汽车行业相关的税收政策大致包括:

(1) 地区税收减免

为了鼓励开发巴西北部和东北部地区,巴西联邦政府和地方政府对外国投资(必须是合资形式,且巴方要控股)实行先征10 年企业所得税,从第 11 年起的五年内减征 50%;免征或减征进口税及工业制成品税;免征或减征商品流通服务税等地方税。
三、主要国家扶持本国汽车制造业的实践

（2）出口税收减免

为了改善国际贸易收支情况，巴西政府鼓励各公司大量出口汽车，并且规定出口的轿车免税，而在巴西国内销售的轿车要征收所得税，相当于销售价格35%—40%；生产出口产品需要进口的设备，可以减收进口税（相当于出口价格1/3的进口设备，可以减收进口税）；进口原材料可减税50%；等等。

（3）对中小企业提供税收优惠

为了鼓励中小企业，巴西联邦政府对其提供了不同程度的税收优惠，且根据具体情况分为三类：一是简易税率。要求企业年经营额在120万雷亚尔以内，且所有外国股东必须具有巴西永久居留证。根据资本额的多少，简易税率从3.5%—9.1%不等。二是假设利润。要求企业年经营额在4800万雷亚尔以内，且不限制所有股东必须有巴西永久居留证。征收税率如下：社会一体化税0.65%，社会安全费3.0%，企业所得税1.2%，法人盈利捐税1.08%。三是实际利润。要求年营业额在4800万雷亚尔以上的公司，可自行选择是否适用优惠税率，且不限制所有股东必须有巴西永久居留证。征收税率如下：社会一体化税1.65%，社会安全费7.6%，企业所得税15.0%，法人盈利捐税9.0%。

（4）与原产地规则相关的税收优惠

外资企业在所生产的产品增值达到一定幅度，可获原产地证，出口时就可享受巴西与其他国家间的贸易优惠待遇。例如，在巴西组装产品，如向拉美一体化协会（ALADI）成员国出口并享受关税优惠，则进口的零部件CIF值不能超过组装后出口FOB值的50%。如向南共市成员国出口，则组装产品中所使用的零部件的60%（以价格计算）必须来自南方共同市场成员国。

（5）马瑙斯自由贸易区的特殊优惠

为了促进亚马逊西部地区在贸易、工业和农牧业的发展，1967年，巴西正式建立马瑙斯自由贸易区，并享有特殊的优惠政策。2003年12月19日，巴西通过第42号宪法修正案决定将自贸区的有限期延长至2023年。

按照法律规定，在马瑙斯自由贸易区内投资建厂的企业可以享受税收优惠政策。其中，企业可享受的联邦税收优惠包括：进口关税最高可减征88%，免征工业产品税，所得税和其他不可归还的附加税减征75%，免征社会安全费和社会一体化计划费等。企业可享受的州政府税收优惠包括：部分或全部退还商品流通服务税。企业可享受的市政府税收优惠包括：免征城市房地产税。

（6）最新的汽车税收和产业政策

巴西鼓励本土制造，对国内市场实行严格的保护，对汽车征收保护性
的工业产品税。进口至巴西的货物需缴纳进口关税、工业产品税 (IPI) 及货物流通增值税 (ICMS) 和社会一体化税 (PIS)，其中 IPI 属于联邦税，征收对象是工业产品的产出和进口。2011年9月15日，巴西政府颁布第7567号法令，决定将汽车的 IPI 税在原有的基础上提高30个百分点，提高后的适用税率为37%到55%。汽车生产商必须符合政府的三个规定，才可享受工业品税优惠政策，即维持现有税率不变，即：第一，汽车生产商使用的65%以上零配件产自巴西和南方共同市场的其他国家；第二，将0.5%以上营业额用于研发；第三，至少有6项生产工序在巴西境内完成。税率提高幅度是阶梯式的，排量1.0的双燃料汽车工业产品税率由原来的7%提高37%，排量2.0以上汽车的工业产品税率由25%上涨到55%。该政策实施至2012年年底。税率变化主要涉及来自中国和韩国的进口汽车，而进口自南方共同市场国家、墨西哥等与巴西签署自贸协定国家的汽车不受影响。

表10 巴西汽车税一览

<table>
<thead>
<tr>
<th>税种</th>
<th>乘用车</th>
<th>轻型商用车</th>
<th>卡车</th>
<th>客车</th>
<th>拖拉机</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPI</td>
<td>7.0</td>
<td>13.0</td>
<td>25.0</td>
<td>18.0</td>
<td>4.0</td>
</tr>
<tr>
<td>ICMS</td>
<td>12.0</td>
<td>12.0</td>
<td>12.0</td>
<td>12.0</td>
<td>12.0</td>
</tr>
<tr>
<td>PIS</td>
<td>11.60</td>
<td>11.60</td>
<td>11.60</td>
<td>11.60</td>
<td>11.60</td>
</tr>
<tr>
<td>在价格中的占比</td>
<td>27.1</td>
<td>30.4</td>
<td>29.2</td>
<td>36.4</td>
<td>33.1</td>
</tr>
</tbody>
</table>

注：G指汽油车；E/F指混合燃料车。

2012年4月5日，巴西政府颁布第563号临时法令，将7567号政府令规定的将汽车工业产品税的适用税率增加30个百分点的政策延长5年（2013年—2017年）。4月13日，巴西通过第7716号法令，确立了“汽车产业创新项目”（INOVAR AUTO项目）。该项目涉及税收抵减的新规定和对产业投资的要求，并授权政府对某些合格汽车生产企业适用优惠税率。根据第7716号法令，只有被INOVAR AUTO认可的企业才有资格获得减税。

2012年10月3日，巴西政府颁布第7819号法令，修订和细化了INOVAR AUTO法令的核心内容和操作细节，如适用IPI优惠政策的资格和条件，以及作为投资商和生产商的IPI抵免机制。有效期为2013年1月1日
至 2017 年 12 月 31 日。法令规定，巴西汽车生产商、贸易商和拟在巴西投资的企业如达到该法令规定的要求，可申请汽车创新项目资格，获得相应 IPI 税减免。例如，将要在巴西设新工厂或新项目的企业，如报贸工部备案的，建成后，年产量为 10 万台，则在 2 年的建厂期内，可获得每年 5 万台的进口额度，其中第一批（2.5 万台）交纳 6.5% 的 IPI 税，第二批（2.5 万台）交纳 36.5% 的 IPI 税。在汽车投产上市经贸工部检测获得汽车产业创新项目资格后，可返还已交纳税款中的 30% 的 IPI 税。工厂建成后，出产的新车只要经贸工部检测符合技术、环保等相关要求，获得汽车创新项目资格，则仅征收 6.5% 的 IPI 税。仅在巴销售的车企可获得每年 4800 台 IPI 税免税额度，4800 台以内的进口汽车交纳 6.5% 的 IPI 税，超过数量交纳 36.5% 的 IPI 税。

2013 年 5 月 20 日，巴西在联邦公报上发布了第 8015 号法令，对第 7819 号法令做了修订，调整汽车新政的具体操作内容。该法令从 2013 年 1 月 1 日起生效。根据该鼓励计划，履行了相关规定的汽车组装厂，可以免纳额外的 30% 工业产品税。第 8015 号法令也就车辆能效问题做了安排。该法令的附件罗列了汽车能效具体指数，要获得汽车新规鼓励计划资格，车企必须在 2017 年 10 月 1 日前执行相关能耗要求。

2. 金融政策
 外国企业在巴西享受国民待遇，但巴西贷款利率非常高，已经到了两位数的水平。为了抵御高企的通货膨胀，2013 年 11 月 27 日，巴西央行再次上调基准利率至 10% 的水平，这是年内巴西央行连续第六次上调基准利率。

2011 年 8 月，巴西政府公布了一项“强大巴西”的刺激工业计划。在这一计划中，巴西拟建立出口和企业创新融资基金。巴西经济会开发银行将提供 20 亿雷亚尔的低息信贷，支持企业科技创新、研发新产品和更新技术设备。同时，鼓励商业银行对出口企业的贸易融资。

巴西大力促进汽车的出口，外资企业在巴西境内生产的产品，如向第三国出口，可向巴政府申请出口信用贷款和保险。在中国企业在巴西合营建厂的过程中，巴西政府承诺若从当地采购设备，对资金将给予较低的贷款利率支持。

3. 贸易救济措施
 巴西频繁利用贸易救济手段对国外汽车零部件进行调查。2008 年 7 月 8 日，巴西对原产于中国的机动小客车用轮胎进行反倾销立案调查。2009 年 9 月 9 日作出反倾销终裁，对其征收 0.75 美元/千克、税率 28.1% 的最终反倾销税，
有效期 5 年。

2012 年 8 月 24 日，巴西决定对原产于中国的机动小客车轮胎展开反倾销复审调查，2013 年 9 月，巴西贸易保护局称，已结束对进口自中国的汽车轮胎反倾销日落复审调查，决定继续征收 1.08－2.17 美元/千克的反倾销税，有效期 5 年。

(二) 俄罗斯

2009 年为应对经济危机，俄罗斯政府相继出台了一系列保护本国汽车产业的政策，对 2010 年俄罗斯汽车市场复苏起到了重要作用。2010 年，俄罗斯又推出了一系列国产车购买支持政策。2011 年，俄罗斯继续推行新车消费刺激等一系列政策。2011 年底，世界贸易组织第八次部长级会议正式批准俄罗斯加入世贸组织，入世协议对俄罗斯汽车产品给予长达 7 年的关税保护期。2013 年俄工贸部出台汽车优惠贷款政策，旨在刺激俄罗斯汽车销售，该政策于 2013 年 7 月 1 日起实施，原计划到 2014 年 4 月 1 日到期。

1. 财税政策

(1) 用联邦预算对国内汽车业提供补贴

2009 年，俄罗斯联邦预算用于汽车制造业反危机的支持资金达 390 亿卢布(12.6 亿美元)。除补贴购车贷款利息和铁路运输费外，俄罗斯政府还对租赁汽车贷款利息、政府采购汽车及汽车企业技术改造的贷款利息等方面给予补贴。2011 年 8 月 30 日，俄罗斯政府 640 号决议确立了由联邦预算对国内汽车产业提供财政补贴的程序。预算补贴将用于偿还对汽车工业开展创新和投资项目贷款利息以及 2009—2010 年国家担保贷款的利息。2009—2010 年度，俄罗斯最大汽车生产商伏尔加汽车集团获得了总额达 650 亿卢布的预算资金支持。为了刺激汽车市场发展，2014 年初，俄罗斯政府发布公告称，到 2016 年的三年内，将向汽车行业提供 2.710 亿卢布(约 80 亿美元)的补贴。补贴将用于研发等领域，支持汽车行业提供更多就业岗位，并补偿车企因满足收紧的排放标准而面临的额外开支。

(2) 制定《2020 年前汽车工业发展规划》

2010 年 3 月 4 日，俄罗斯政府工作会议通过了《2020 年前汽车工业发展规划》。根据规划，未来 10 年，俄罗斯政府将向汽车业投入 5840 亿卢布，而包括外国汽车制造商投资在内的总投资额将达 1－1.2 万亿卢布。根据这一发展规划，到 2020 年，俄罗斯小轿车市场容量将达到每年 350－360 万辆，其中进口份额占 20%，出口份额占 8%。发展规划还制定了一系列刺激市场需求，
鼓励国产汽车出口以及税收和保险等方面的措施。根据这一规划，俄罗斯政府将采取措施鼓励建立汽车工业科研基地及进行技术创新。此外，政府将对投资予以一定补偿，并规定最多可延期5年清偿债务。

(3) 实施高关税保护

2008年12月10日，俄罗斯颁布了关于提高汽车进口关税的政府令，并于2009年1月12日正式生效，为期9个月。这一高关税政策到期后又延长了9个月。加入世贸组织后，俄罗斯降低了自2009年起提高的“反危机”关税，将全新进口小型车的进口税从30%下调至25%。随后3年内此税率维持不变，再往后4年内每年下调2.5%，入世7年后其关税将降至15%；车龄3—5年和5—7年的二手车进口关税也将降至25%，此税率将维持5年不变，再往后2年内降至20%。

<table>
<thead>
<tr>
<th>商品</th>
<th>入世后关税(%)</th>
<th>当前关税(%)</th>
<th>过渡期(年)</th>
</tr>
</thead>
<tbody>
<tr>
<td>奶制品</td>
<td>14.9</td>
<td>19.8</td>
<td></td>
</tr>
<tr>
<td>谷类</td>
<td>10</td>
<td>15.1</td>
<td></td>
</tr>
<tr>
<td>油籽、脂肪和油</td>
<td>7.1</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td>糖</td>
<td>223(每吨)</td>
<td>243(每吨)</td>
<td></td>
</tr>
<tr>
<td>牛肉</td>
<td>15(配额内)</td>
<td>55(配额外)</td>
<td></td>
</tr>
<tr>
<td>猪肉</td>
<td>0(配额内)</td>
<td>65(配额外)</td>
<td></td>
</tr>
<tr>
<td>部分精选禽肉</td>
<td>25(配额内)</td>
<td>80(配额外)</td>
<td>8</td>
</tr>
<tr>
<td>化工品</td>
<td>5.2</td>
<td>6.5</td>
<td>7</td>
</tr>
<tr>
<td>汽车</td>
<td>12</td>
<td>15.5</td>
<td>7</td>
</tr>
<tr>
<td>机电产品</td>
<td>6.2</td>
<td>8.4</td>
<td></td>
</tr>
<tr>
<td>木材和纸浆</td>
<td>8.0</td>
<td>13.4</td>
<td></td>
</tr>
<tr>
<td>信息技术产品</td>
<td>0</td>
<td>5.4</td>
<td></td>
</tr>
<tr>
<td>直升机和民用航空器</td>
<td></td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

表11 加入WTO后俄罗斯进口关税的调整

资料来源：中国驻俄罗斯使馆经商处网站。

(4) 推出汽车工业组装协议

为了推动本地化生产，俄罗斯2010年12月出台新的汽车工业组装协议（166号法令），新规要求新建的合资工厂在3年后年产量达到35万辆（此前已签署协议的合资工厂4年后年产量达到30万辆），6年后汽车零部件国产化率不得低于60%，符合条件的外国公司免税进口部分汽车零部件。如企业不愿
按新规组装汽车，将全额交付汽车零部件进口关税。如按新规组装汽车，生产外国品牌汽车的企业最晚必须于 2011 年 2 月底前重新签署合同。目前俄罗斯已与大众、尼桑、奔驰、福特和通用等外国汽车生产商签署了新的工业组装协议，投资总额将超过 3000 亿卢布。

（5）换购国产新车补贴

2010 年 3 月，俄罗斯政府开始实施汽车换购补贴制度。报废 10 年及以上车龄的汽车且购买国产新车（乘用车和轻型商用车，总质量小于 3.5 吨）的俄自然人，享受 5 万卢布的换购补贴。俄罗斯政府最初投入的补贴预算是 100 亿卢布，相当于补贴 20 万辆车。此后俄罗斯政府 2 次追加补贴预算，总计投入 300 亿卢布，相当于补贴了 60 万辆车。实施补贴政策增加了国产新车的销售量，促进了市场恢复，同时还扶持了经营重组中的伏尔加等国内汽车制造商。在享受补贴政策的 60 万辆新车中，其中拉达（LA-Da）车占 77%。

（6）贷款购车优惠

2009 年 3 月 19 日，俄罗斯政府决定，购买国产轿车的俄自然人可享受卢布贷款基准利率 2/3 的利息补贴，车辆总价不超过 35 万卢布（约合人民币 831 万元），首付款不得低于 30%。这项规定涉及俄罗斯本土汽车和在俄罗斯境内组装的外国品牌汽车。2009 年 7 月 6 日，俄罗斯政府将可接受消费贷款补贴汽车的最高价格由 35 万卢布提高至 60 万卢布，居民购车最低首付款比例由 30% 调整至 15%，同时从联邦预算中拨款支持汽车租赁公司。2010 年，普京签署 N56 政府令，决定将 2009 年实施的为购买国产汽车提供贷款利息补贴的保护性政策延长至 2010 年。为此，俄罗斯财政部在 2010—2013 年间分别向有关银行拨款 10 亿卢布、17.5 亿卢布、10.02 亿卢布和 5 亿卢布。2011 年，俄罗斯政府继续推行贷款购车优惠政策，并投入 28 亿卢布作为优惠政策预算。

2. 其他政策

（1）鼓励电动汽车发展

为促进电动汽车的发展，自 2014 年 1 月 1 日至 2015 年 12 月 31 日，进入关税同盟国家（俄、白、哈）的轻型电动汽车（9 座以下）将暂免 19% 的进口税，混合动力汽车不享受免税。目前，俄罗斯市场上唯一正式上市的电动汽车是三菱 I-MIEV 汽车，售价约 5.6 万美元。

（2）政府采购政策

为了支持俄罗斯本国汽车产业的发展，俄罗斯政府宣布，除国家领导人和
处于联邦安保范围内的公务人员用车外，俄罗斯联邦和地方政府只能采购关税同盟成员国俄罗斯、白俄罗斯、哈萨克斯坦生产的公务车。由于俄罗斯尚未加入世贸组织的政府采购协议，故有权自行对政府采购作出规定，这一扶持措施与俄罗斯加入世贸组织的承诺并不矛盾。

（三）欧盟
1. 财税政策
（1）财政投入
国际金融危机发生之后，欧盟的汽车产业陷入困境。为此，欧盟各成员国纷纷出台了补贴政策来刺激需求。比如，2008 年年底，西班牙和法国首先出台了“旧车换新车计划”（scrapping schemes）。这项计划是指由国家财政为消费者淘汰旧车购买新车提供补贴，主要针对需求相对容易调节的乘用车与轻型商用车。随后，英国、德国、意大利等多国也纷纷出台类似计划（见表 12）。

表 12 欧盟成员国“旧车换新车计划”

<table>
<thead>
<tr>
<th>国别</th>
<th>补贴额（欧元/辆）</th>
<th>“旧车”使用年限</th>
<th>“新车”排放标准</th>
<th>补贴点及补贴总额</th>
<th>实施期限</th>
</tr>
</thead>
<tbody>
<tr>
<td>奥地利</td>
<td>1 500</td>
<td>13 年以上</td>
<td>不低于欧Ⅳ标准</td>
<td>补贴由经销商支付 50% 总预算 4 500 万欧元</td>
<td>2009.4.1—2009.12.31</td>
</tr>
<tr>
<td>德国</td>
<td>2 500</td>
<td>9 年以上</td>
<td>不低于欧Ⅳ标准</td>
<td>总预算 15 亿欧元</td>
<td>2009.1.14—2009.12.31</td>
</tr>
<tr>
<td>法国</td>
<td>1 000</td>
<td>10 年以上</td>
<td>二氧化碳排放不超过 180 克/公里 轻型商用车不低于欧Ⅳ标准</td>
<td>总预算 2.2 亿欧元</td>
<td>2008.12.4—2009.12.31</td>
</tr>
<tr>
<td>葡萄牙</td>
<td>1 000</td>
<td>10 年以上</td>
<td>二氧化碳排放不超过 140 克/公里</td>
<td>总预算 1 亿欧元</td>
<td>2009.1.1—2009.12.31</td>
</tr>
<tr>
<td>1 250</td>
<td>15 年以上</td>
<td>二氧化碳排放不超过 140 克/公里</td>
<td>总预算 2.5 亿欧元</td>
<td>2009.1.1—2009.12.31</td>
<td></td>
</tr>
<tr>
<td>西班牙</td>
<td>无息贷款（上限 1 万欧元）</td>
<td>10 年以上或总里程 25 万公里以上</td>
<td>二氧化碳排放不超过 140 克/公里 轻型商用车二氧化碳排放不超过 160 克/公里</td>
<td>新车价格不超过 3 万欧元</td>
<td>2008.12.1—2010.7.31</td>
</tr>
<tr>
<td>意大利</td>
<td>1 500(小汽车)；2 500(轻型商用车)</td>
<td>9 年以上</td>
<td>不低于欧Ⅳ标准，汽油车二氧化碳排放不超过 140 克/公里，柴油车不超过 130 克/公里 轻型商用车不低于欧Ⅳ标准</td>
<td>总预算 3 亿欧元</td>
<td>2009.2.11—2009.12.31</td>
</tr>
<tr>
<td>英国</td>
<td>2 200</td>
<td>9 年以上</td>
<td>二氧化碳排放不超过 140 克/公里</td>
<td>总预算 2.2 亿欧元</td>
<td>2009.4.22—2010.3.31</td>
</tr>
</tbody>
</table>

资料来源：孙彦红：《国际金融危机冲击下的欧盟汽车业：影响、对策与前景》，《欧洲研究》2011 年第 2 期。
在电动汽车发展方面，欧盟各国运用财政手段进行推动，这些财政政策主要包括财政贷款和补贴等。

第一，建设充电站和为电池研发提供资金。“国家电动汽车计划”是德国在2010年启动的国家级项目，目的是推进电动汽车的研究和市场化。对于额外的资金补贴，德国政府虽然在这个计划中没有提出，但已经推出的第二个经济刺激计划包含了一项刺激政策，即到2011年年底提供资助1个电池研究中心和8个电动车的5亿欧元资金的城市试点计划。法国的项目规划是在四年内投入4亿欧元，帮助22个电动汽车试点城市建设充电站、停车场，同时与法国电力公司、雪铁龙汽车公司签署协议，用以共同开发和推广电动汽车。此外，还研究和开发电动汽车高能电池，以及租赁和维修电池等工作，与萨夫特(SAFT)公司合资组建了电池公司。英国政府的项目计划是五年投入资助电动汽车的2.5亿英镑，其中包括先期的购买了500个充电站的2500万英镑，之后世界最大的环保汽车协同实验项目的2500万英镑，并增加在电池的研发发面的投入。

第二，对电动汽车进行财政补贴。法国政府的补贴手段是：最高支付5000欧元的财政补贴给购买二氧化碳释放低于每公里60克的电动汽车；减免2000欧元的税收给购买二氧化碳释放低于每公里130克的混合动力汽车。比利时政府的补贴手段是：补贴车价总额的15%给二氧化碳释放低于每公里105克的电动汽车；补贴车价的3%给每公里二氧化碳释放低于115克的电动汽车的。意大利政府的补贴措施是：补贴3500欧元给购买每公里二氧化碳释放低于120克的电动汽车车主；如果排放量高于120克，那么补贴额也相应下降，为1500欧元。瑞典政府的做法是：补贴40%电动汽车与传统燃油车之间的差价。

（2）税收政策

欧盟国家对电动汽车实行税收减免和优惠。近些年来，欧盟为了对汽车产业严格控制碳排放和污染物排放，绿色税收成为一项重要的控制手段而被广泛采用，而且形成了较为完善的汽车产业绿色税制，主要内容包括以下项。

第一，汽车购置税。在汽车购置方面，欧盟国家通常的做法主要是征收较低的增值税。目前，各成员国征收不同的税率，如意大利和法国征收20%左右的购置税。德国在国际金融危机之后推行了汽车购置税减免的新政策以刺激经济复苏，特别是对于低排放和环保型新车设置了一定的免税期。此外，部分欧盟国家规定新车登记要缴纳一定的地方税，如法国从2009年7月1日开始根据区域差异性对新登记的车辆征收不同水平的地方税。

第二，低碳车型税收优惠。欧盟各成员国为了鼓励居民购买环保型汽车，
纷纷出台了一系列奖励措施，主要是减免小排量汽车、清洁能源的电动车等“绿色汽车”的税收。比如，德国政府规定从 2009 年 7 月 1 日开始将对新登记的汽车征税二氧化碳排放税，但是对于二氧化碳排放量低于 120 克/公里的汽车免于征收（2012—2013 年），2013 年以后则要达到 95 克/公里才可以豁免。

2. 金融政策

针对汽车行业资本密集型的特点，欧盟为汽车制造商提供融资提供便利与支持。为了促进汽车业发展，欧盟陆续出台了一系列专门针对汽车业的融资类救助措施。

2009 年初，随着汽车行业资金链趋紧，各成员国纷纷出台支持融资类措施（见表 13）。这些措施通过两个渠道为企业提供金融支持，一方面提高企业获得商业贷款的机会，另一方面以国家援助等方式直接为企业提供资金。

<table>
<thead>
<tr>
<th>国 别</th>
<th>出台时间</th>
<th>政策措施</th>
<th>主要内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>德 国</td>
<td>2009 年 1 月</td>
<td>提供贷款担保</td>
<td>计划提供 1 亿欧元用于汽车企业的贷款担保。</td>
</tr>
<tr>
<td></td>
<td>2009 年 4 月</td>
<td>加大研发投入</td>
<td>批准总额为 5 亿欧元的混合动力汽车研发支持，加大对电动汽车的研发投入。</td>
</tr>
<tr>
<td>法 国</td>
<td>2009 年 2 月</td>
<td>提供优惠贷款，重点支持大型企业</td>
<td>向汽车制造商提供总额 78 亿欧元的资金支持。其中，分别向雷诺和雪铁龙提供 30 亿欧元优惠贷款，向汽车设备制造商提供 6 亿欧元贷款。</td>
</tr>
<tr>
<td>英 国</td>
<td>2009 年 1 月</td>
<td>提供贷款担保及贷款</td>
<td>推出 23 亿英镑的援助计划，通过欧洲投资银行项目提供 13 亿英镑的贷款担保，提供 10 亿英镑贷款用于投资生产“绿色汽车”。</td>
</tr>
<tr>
<td></td>
<td>2009 年 4 月</td>
<td>推动生产环保汽车</td>
<td>通过“绿色振兴计划”中的相应预算，推动电动车、混合燃料车批量生产；出台为期 5 年的电动汽车资助计划。</td>
</tr>
<tr>
<td>西班牙</td>
<td>2009 年 2 月</td>
<td>发展新型汽车、开发电动汽车</td>
<td>提供 8 亿欧元用于发展新型汽车项目；投入 1 000 万欧元开发电动汽车；2009—2010 年，在部分城市先行实施 2 000 辆电动汽车上路试验。</td>
</tr>
<tr>
<td>瑞 典</td>
<td>2008 年 12 月</td>
<td>提供贷款担保</td>
<td>提供总额 280 亿克朗（约合 26 亿欧元）的资金，重点向陷困境的企业提供贷款担保。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>加大汽车研发投入</td>
<td>计划创办国营企业从事环保汽车技术研发。</td>
</tr>
<tr>
<td>葡萄牙</td>
<td>2009 年 1 月</td>
<td>提供特殊贷款</td>
<td>提供总额达 2 亿欧元的特殊贷款用于支持汽车出口。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>加大结构转型与创新投入</td>
<td>提供 1.5 亿欧元专项资金，促进汽车企业加大结构调整和科技创新投入。</td>
</tr>
</tbody>
</table>

资料来源：孙彦红：《国际金融危机冲击下的欧盟汽车业：影响、对策与前景》，《欧洲研究》2011 年第 2 期。
除了各个成员国各自采取的措施，在欧盟层面也同样采取了一系列措施。第一，对向汽车企业给予直接的资金支持。2008 年年底，欧洲投资银行（EIB）采取新的“欧洲清洁交通工具”（European Clean Transport Facility）项目，将 2009 年和 2010 年针对汽车业的贷款额度均提高至 40 亿欧元，重点支持生产环保型汽车的制造商。第二，提供制度支持并进行监督。欧盟在 2008 年年底达成了“国家援助临时框架”，以促进成员国迅速采取行动。框架中对汽车业给予补贴性贷款和担保，以及“绿色生产”专项补贴贷款等，解决企业的资金不足问题，该框架很好地补充了欧盟原有国家援助体系。同时，欧盟委员会监督内部市场有效运转。欧盟委员会要求成员国救助方案须报送审批，必要时会要求做出澄清，审批通过方可实行。

3. 贸易救济措施

2009 年 8 月 13 日，欧盟贸易委员会开始对我国出口欧盟的汽车铝合金轮毂进行反倾销调查。应诉企业包括戴卡、万丰、立中、友发等 36 家，涉案出口金额 3.9 亿美元。根据欧盟反倾销法的规定以及欧洲车轮制造商协会提出的申请，如果最后的裁决对中方不利，那么中国出口到欧盟的铝合金轮毂将连续 5 年被欧盟征收最高达 33% 的反倾销税。欧盟选择参照国土耳其作为第三国，其成本比中国高出 33%，于是欧盟决定对中国轮胎产品加征 33% 的反倾销税。经过 9 个月的调查，欧盟委员会在 2010 年 5 月公布了对我国铝合金轮毂反倾销案的初裁，不承认所有抽样企业的市场经济地位。裁决两家企业，万丰和友发的倾销幅度分别为 61.8% 和 36.7%，其他合作企业的倾销幅度为 48.7%，全国倾销幅度为 69.3%，全国损害幅度为 20.6%。2010 年 10 月，欧盟做出终裁，对我国铝合金轮毂征收 22.3% 的反倾销税。

欧盟在 2013 年 9 月又针对几家俄罗斯公司进行反倾销调查。这些俄罗斯公司包括联合冶金公司和车里雅宾斯克轧管厂，关税为 10% 至 28%，而对钢缆等一些商品，关税高达 50%。在 2013 年 10 月初欧盟就布鲁塞尔针对俄罗斯征收外国报废汽车回收费的索赔，要求世贸组织召集全会解决纠纷。此前，欧盟发起过正式调查程序，但双方没能和平解决。在俄罗斯的外国汽车制造商从 2012 年 9 月起开始为汽车未来的报废回收缴纳特别费用。名义上，在俄罗斯的国产汽车和进口汽车缴纳同等的报废回收费，这里面除了享受进口汽车优惠和自愿回收自产汽车的厂家以外，但是上述的规定将俄罗斯本国车企均排除在外。欧盟因此认为这一措施是歧视性措施。欧洲官员经过计算得出俄罗斯法律的特殊性造成欧洲汽车行业每年 100 亿欧元损失。
(四) 美国

20 世纪 70 年代以前，美国一直采用比较自由放任的汽车产业政策，并没有过多干预汽车产业的自主发展。但从 70 年代中期开始，面对日本汽车大量涌入，美国开始进入对本国汽车产业的保护时期。近 20 年来，在能源危机和国际竞争的双重压力下，美国政府进入了汽车产业扶持和保护的深化时期。

1. 财税政策

(1) 救助政策

历史上，美国政府对汽车产业进行救助和施以政策援手屡见不鲜。2008年伴随次贷危机的逐渐深化，由于信贷市场已经冻结，美国通用汽车和克莱斯勒现金流链断裂，离破产已一步之遥，只能依靠政府救助。2008 年 12 月 19 日，时任美国总统布什宣布“汽车业重组及资产盘活救助方案”，政府将提供总计 174 亿美元的紧急贷款，救援陷入困境的美国汽车产业。救助方案要求得到款项的公司必须将这笔资金用于盘活公司资产，如果公司不能在 2009 年 4 月 1 日前达到要求，所有贷款和基金将被召回到财政部。其绑定条件是：公司必须提供无投票权股票权证；公司必须接受管理层薪资水平限额，取消一切奢侈消费如供养公司的私人飞机；在法律限期内公司首先偿还国家债务；公司必须允许政府检查账本和记录；公司必须上报政府大规模交易，政府有权否定；公司在未付清政府债务时不得派发股息。罗姆尼(2012)指出，美国政府最终为汽车工业提供的贷款总额高达 860 亿美元，其中通用汽车公司贷款 500 亿美元，克莱斯勒贷款 120 亿美元。

(2) 扶持政策

美国政府非常重视对汽车产业的扶持。除在危急时刻，为汽车产业积极提供救助外；在平稳时期，更是注重综合运用税收优惠（如退税、所得税抵免、消费税抵免等）、财政补贴（如低息贷款、基础设施补贴、免费停车等）等手段提振汽车销售，加快符合时代潮流的新产品的研发和生产，使美国汽车产业在国际市场上始终保持竞争优势。

A. 法律法规支持

业提供贷款支持和税收优惠。法案要求美国能源部在一年内开展一项总额不超过 250 亿美元的贷款计划，对符合条件的生产先进汽车、配套及工程集成的个人和机构提供直接贷款。2009 年，国会通过《美国恢复与再投资法案 2009》，进一步加大对电动汽车生产企业的税收优惠力度，并为包括电动汽车相关技术在内的能源研究和基础设施建设提供资金支持。

B. 研发及产业化支持政策

1993 年，克林顿政府宣布“新一代汽车合作伙伴计划”（PNGV），每年拨款 3 亿美元，用于开发和制造车用轻量化材料和清洁燃料汽车。

2002 年，终止 PNGV，同时启动以开发不依赖石油的清洁实用型汽车为目标的“自由汽车”计划。

2009 年 8 月，奥巴马政府宣布“下一代电池和电动汽车计划”，总经费 24 亿美元，要求企业按 1：1 的比例配套 24 亿美元，发展 9 类、48 个科研生产项目。其中，15 亿美元资助美国电池及其配件制造商；5 亿美元资助电动力系统（电动机、电路系统及其他动力系统器件）制造商；4 亿美元用来购买 7000 余辆全电动汽车和“插电式”电动车，在多个地点做演示验证，研究并评估其性能，建立充电系统，并教育、培训出先进电动汽车领域的专业人才。

2013 年美国能源部能源效率与可再生能源办公室（EERE）发布“电动汽车普及蓝图”，展示了未来五年内美国能源部发展电动汽车的技术和部署目标。电池的研发投入、电驱动系统的研究投入、车辆的轻量化、气候控制技术等是能源部电动汽车计划的主要技术目标。2013 年美国能源部宣布将投资 5000 万美元推动电动汽车研发项目，主要用于电动汽车领域 5 个大项目的开发，包括先进轻质材料和推进材料、先进电池、电子设备、先进加热和空调系统以及燃料和润滑剂。相关企业、国家实验室和大学都可以申请这笔资金。

C. 消费刺激政策

《能源政策法案 2005》规定，美国为每款符合条件的混合动力乘用车提供 900—3400 美元不等的税收抵免优惠（到 2010 年年底，对混合动力车和压缩天然气汽车的补贴优惠到期）；每个汽车品牌所售前 6 万辆混合动力汽车可享受全额优惠；销量达 6 万辆后，下两个季度所售混合动力车的优惠降为全额的一半，再下两个季度降为 25%，之后不再享有优惠。后根据美国经济刺激法案，对补贴车辆规模从混合动力车时代的前 6 万辆/车企提高到电动汽车时代的前 20 万辆/车企。

《紧急经济稳定法案 2008》规定，美国政府为购买储能 4 千瓦时电池的插
电式电动汽车（含插电式混合动力汽车与纯电动汽车）提供 2500 美元的税收抵免，随着电池容量的增加，按 411 美元/千瓦时增加税收抵免税额，并根据车重设定不同税收抵免税额上限，车重越大，享受抵扣额度越高。2012 年 2 月，奥巴马政府将电动车税费优惠额度从 7500 美元提高到 10000 美元。

除此之外，多个州政府也提供额外的补贴政策，如加州政府提供 5000 美元的零排放车辆补贴。加州大气资源委员会每年都为清洁汽车减免计划——CVRP——提供一笔基金，该项目预计会持续到 2015 年，新泽西州、佐治亚州等超过 20 个州政府也纷纷提供数千美元的购车补贴。

D. 基础设施建设支持

截至 2013 年 2 月底，美国已建设有 5615 个公共充电桩。而且根据美国能源部数据显示，美国公共充电桩正以每月 180 个的速度不断增加。除充电设备外，美国还在道路建设方面进行相应支持。美国在西海岸 5 号州际高速公路上新建一系列汽车充电站和其他配套充电设施，以打造全球第一条专为电动汽车服务的高速公路。5 号州际公路全长 2223 公里，每隔 64—96 公里建一座充电站，每个充电站同时提供 30 分钟 480 伏快速充电接口和 4—6 小时慢速充电接口。

同时，对基础设施投资加大税收抵免，提高折旧速度。《2008 紧急经济稳定法案》扩大《2005 能源政策法案》对电动汽车基础设施的税收抵免力度，将有关的税收抵免在后者基础上增加 30%。

E. 政府采购政策

《2007 能源独立与安全法案》明确把插电式电动汽车、各类混合电动汽车及其他电动交通工具纳入政府交通工具采购范围。奥巴马政府提出到 2012 年前实现政府采购车辆中一半是插电式混合动力车或纯电动汽车。由此加大政府采购力度，起到有效示范作用，帮助企业扩大生产规模。

F. 其他优惠政策

美国加州政府规定，压缩天然气汽车（CNG）、氢燃料汽车、电动车和插电式混合动力车（PHEVs）凡符合明文规定的加州和联邦的排放标准，并贴有加州机动车清洁空气汽车贴的车辆，可以在不超载的情况下使用高载量车道（HOV）。白色清洁空气车贴不限量地提供给那些合格的压缩天然气汽车、氢燃料汽车和电动车。绿色清洁空气车贴仅提供给优先申请的 40000 名购买或租赁合格插电式混合动力车（PHEVs）的申请者。这两种车贴的使用期限均到 2015 年。这些车辆同时也可免除高载客量收费车道的
2. 贸易救济措施

美国商务部2010年公布了为支持国家出口刺激计划而加强贸易法实施的14项措施，这些措施重点针对涉及非市场经济国家反倾销反补贴案件的处理。继2010年和2011年先后公布了3项实施措施后，2012年美国商务部又公布了一项新措施，针对非市场经济国家反倾销复审中出口价格计算方法，并计划对有关事实信息的定义、提交事实信息的时间限制以及在非市场经济体系国家的反倾销程序中使用市场经济体系原料价格这些问题进行法规修订。这些调整都可能对中国出口企业产生负面影响。

2012年9月17日，美国就中国关于汽车产业的补贴措施问题向世贸组织提起贸易诉讼，主要涉及中国对符合出口实绩条件，以及位于政府指定经济区（即“出口基地”）内的汽车及汽车零部件企业提供的补贴措施。美国指出，中国“出口基地”项目提供的出口补贴包括出口现金津贴、研发资助、贷款贴息以及税收优惠待遇等。美国认为中国提供的上述补贴为其汽车及汽车零部件产业提供了不公平的竞争优势，扭曲了美国汽车及汽车零部件制造商的贸易环境。10月23日，WTO决定成立专家组，正式审理此案，目前尚未结论。

2011年3月30日，美国钢制轮毂制造商Accuride Corporation、Hayes Lemmerz International，Inc.联合向美国国际贸易委员会和美国商务部提出申诉，要求对自中国进口的钢制轮毂进行“双反”调查。2011年4月19日，美国商务部决定对此进行反倾销反补贴合并调查。2011年10月27日，美国商务部对中国钢制轮毂产品做出反倾销调查初裁，认定中国对美国出口钢制轮毂产品低于正常价值，中国出口企业产品倾销幅度高达110.58%至193.54%，补贴初裁调查认定税率为26.24%至46.59%。2012年3月19日，美国商务部作出肯定性终裁，认定中国钢制轮毂生产商或出口商在美国市场销售产品存在倾销行为，倾销幅度从44.96%至193.54%不等。同时，还最终裁定中国输美的此类产品接受了25.66%至38.32%不等的补贴。2012年4月17日，美国国际贸易委员会发布公告，宣布对华钢车轮“双反”案终裁结果：6位委员一致投票认定中国输美钢制轮毂未对美国相关产业造成损害或威胁，将不对中国产品采取任何措施。至此，这个历时一年多的案件，历经美国国际贸易委员会初裁调查、美国商务部较高初裁和终裁税率的案件，最终以中方胜诉结案。

3. 知识产权保护政策

美国政府和企业都非常重视汽车领域的技术竞争与专利布局。首先，美
三、主要国家扶持本国汽车制造业的实践

中国政府注重立法保护，通过立法为汽车行业的知识产权战略实施提供保障，汽车行业相关立法、知识产权利益关系的调整和对外汽车贸易的各个方面体现汽车行业的知识产权战略。其次，美国汽车企业特别注重对专利的保护，不仅较早地建立了企业专利战略、商标战略，而且采取进攻性的专利战略，注重对核心技术的开发和保护。在新能源汽车技术研发方面，美国以2,693.7万件的专利申请量排名世界第二。按照国际专利分类法对美国新能源汽车技术领域的专利申请进行统计，排在首位的是“用于直接转化学能为电能的方法或装置技术”，其次是“车辆动力装置或传动装置等方面的相关技术”，再次是“电动车辆的供电或配电的电路装置或电能存储系统”等方面的相关技术。总体来看，美国新能源汽车技术专利主要涉及汽车电力、动力、传动和系统控制等方面的方法与装置。
四、主要国家汽车市场壁垒

(一) 巴西
1. INOVAR AUTO 项目

INOVAR AUTO 项目对巴西汽车产业影响深远，巴西旨在通过该项目保护国内市场和产业，刺激投资和创新，改善国内汽车生产的能源效率等。法令规定了一系列满足税收减免资格的要求，除了汽车本地化生产标准，还有更加严格的油耗和排放规定、汽车研发和科技投资要求以及工程技术和供应商发展要求等等。法令还规定，企业如果无法满足法规的各项要求，将给予额外的税收优惠政策。INOVAR AUTO 相关政策不够透明，暂时没有明确的官方解释，存在诸多不确定性。截至目前，企业一直是通过临时授权的方式获得汽车鼓励政策的优惠资格。

针对巴西鼓励本土制造的优惠财税政策，其他国家认为，企业要想在巴西发展汽车产业，就必须遵循巴西政府提出的企业本土化要求并进行技术合作，巴西的做法为本土企业提供了更多保护，妨碍了公平竞争，具有明显的倾向性。

各国对此表示担忧，欧盟甚至已经在 2013 年年底向 WTO 提交了诉讼文件，这也是欧盟过去十年来首次针对巴西提出贸易诉讼案。欧盟称，巴西近几十年采取的一系列税收政策，“与 WTO 规定的义务不相容，有利于国内企业在竞争中取得优势”，巴西相关政策涉嫌违反《补贴与反补贴协定》第 3.1 条 b 款，《与贸易有关的投资措施协议》第 2.1 条、2.2 条以及该协定附件的例示清单的相关规定。同时，欧盟还对巴西政府扩大对出口商的税收减免表示不满。目前，双方均在谋求 WTO 的调解。

① 2013年12月，欧盟向WTO争端解决机构诉巴西有关税费的部分措施，案号DS472。
中国企业受到巴西汽车新政的严重影响和冲击，在巴西的销量集体下滑，市场份额缩减。2011年，巴西是仅次于俄罗斯的中国第二大自主品牌汽车出口目的地，而2012年排名则跌出前十。2012年，包括奔驰、福特、菲亚特和大众等18家汽车企业在巴西取得了优惠资格，中国车企并未进入名单。

（二）俄罗斯

1. 汽车认证标准

从2011年7月1日起，中国已全面实行乘用车第四阶段排放标准，即国IV排放标准，但俄罗斯尚未承认中国的标准体系和认证。中国车辆在出口前需先取得国内认证，还要获得俄罗斯相关机构的认证，给企业造成很大的不便。在排放标准改变后，通常只需要对汽车发动机的检验和认证实施相应调整即可，然而，俄罗斯在实施欧Ⅳ标准后，却要求整车进口的所有零配件都必须重新进行认证。这一做法提高了企业的认证和检验费用。

此外，俄罗斯汽车认证标准变动较为频繁，检验项目不断增加，使企业无所适从。俄罗斯整车认证的检验项目从2007年的18项逐步增加到2008年的55项，包括在正面撞车时保护司机和乘客安全的标准（R94），在侧面撞车时保护司机和乘客安全的标准（R95），汽车报警系统标准（R97），客车的一般安全要求标准（R107），汽车装备压缩天然气标准（R110），轮胎的噪声标准（R117），速度限制装置标准（R89），液罐车防翻车的稳定性标准（R111），蓄电池电动车的要求标准（R100），危险货物运输车标准（R105）等。所有的检验项目必须经过俄官方指定机构认证，认证时间长，认证费用高，认证的有效期短。俄罗斯对车辆底盘认证通常需要6个月，对车身认证需要3个月，两种零配件的认证时间总共达到了9个月，而认证的有效期只有4个月，造成企业每一笔交易都需要重新认证，极大地提高了企业的生产经营成本。

俄罗斯规定，国外汽车生产商和出口商没有直接申请俄罗斯汽车标准认证的资格。所有的认证工作必须由俄罗斯国内进口商申请，再由俄罗斯官方指定的专家到生产企业进行检验，国外汽车生产商和出口商不仅需要承担各项检验费用，还将承担各种差旅费，获得俄罗斯汽车检验认证的费用已由原来的10万欧元上升到50万欧元。

2. 汽车扶持政策

2009年4月和2010年3月，俄罗斯政府先后出台了汽车贷款和以旧换新政策。当时俄罗斯工业能源部制定了50多款入围车型清单，圈定的可以享受车贷补贴的车型名单中，没有纳入中国汽车的任何一款车型。以往的补贴政策
策下，受益最大的也是俄罗斯本土厂商。

3. 汽车报废税

为了防止加入 WTO 对国内汽车产业的冲击，俄罗斯从 2012 年下半年开始对进口汽车征收汽车回收处理费，而对俄罗斯本土生产的汽车而言，无需缴纳该费用。其中小轿车将根据其发动机功率的不同征收 2 万—4.5 万卢布（约合 670—1 500 美元）不等的回收处理费，对货车根据其吨位的不同征收 15 万—20 万卢布（约合 5 000—6 670 美元）不等的回收处理费①。俄罗斯针对进口汽车征收的回收处理费违反了 WTO 国民待遇原则，相比于国外的竞争者而言，俄罗斯的回收费给国内的汽车制造商提供了优势，从而使进口汽车在俄国内市场处于不利竞争地位。

俄罗斯的上述做法遭到了国际社会的普遍指责。2013 年 7 月，欧盟等 WTO 成员已向世贸组织起诉俄罗斯对汽车征收报废回收费。欧盟等成员认为，俄罗斯的上述政策不仅严重影响了欧盟每年高达 100 亿欧元的对俄汽车出口，而且明显违反了 WTO 国民待遇和最惠国待遇等最基本的非歧视原则。WTO 争端解决机构已经建立了专门调查小组，中国与印度、乌克兰、日本、韩国、朝鲜、土耳其和美国作为第三方参与本案件的调查。

2013 年 10 月，在相关成员要求 WTO 设立专家组审理俄罗斯汽车回收费政策之后，俄罗斯立法机构就采取行动修改有关政策，取消歧视性规定。根据俄罗斯杜马通过的法案，俄罗斯将汽车回收费政策扩大适用至俄国内产汽车以及来自白俄罗斯、哈萨克斯坦的进口汽车，而不再仅面向欧盟等 WTO 成员进口汽车征收。该法案于 2014 年 1 月 1 日起正式生效。

（三）欧盟

欧盟对汽车行业的市场壁垒主要以技术性贸易壁垒居多，欧盟对于进入其市场的产品至少限制三个条件其中的一条：欧洲标准（EN）、欧洲标准化委员会（CEN）认证标志，与人身安全有关的产品要取得欧共体安全认证标志（CE），厂商要取得 ISO9000 认证书。欧盟还规定进入其市场的产品只要涉及欧盟指令的，必须符合指令的标准并通过认证，才可以进入欧盟统一市场。出口欧盟的汽车产品所面临的技术性贸易壁垒主要有以下几个方面：

1. 排放标准

一直以来，世界其他地区以欧盟的汽车排放标准作为标杆。2006 年 12 月

通过的欧 V 标准是欧盟现在执行的标准。欧洲的排放标准要求很高，比如氮氧化物，欧 V 标准规定柴油轿车每公里氮氧化物的排放量不应超过 180 毫克，比欧 IV 标准规定的排放量最高值减少了 28%。2014 年 9 月开始实施的欧 VI 标准比此前的欧 V 标准更加严格。根据未来的欧 VI 标准，柴油轿车每公里氮氧化物的排放量不应超过 80 毫克，比目前标准规定的最高排放量低 68%。

目前，我国汽车大部分距离欧 V 标准还有差距，这直接阻碍了我国汽车对欧盟市场和其他以欧盟排放标准为主的市场，也是限制出口数量最重要的一个障碍。

2. 认证制度

按照欧盟规定，2010 年 10 月 29 日开始欧盟内销售的车辆必须完成整车 WVTA 认证。WVTA 认证中的环保项目规定在欧盟国家销售的所有汽车和零部件，除豁免清单 (2008/689/EC) 规定的特殊情况以外，铅、汞、多溴联苯、多溴二苯醚含量不能超过 1000 毫克/公斤，镉含量不能超过 100 毫克/公斤。欧盟规定从 2015 年 1 月 1 日起，汽车零部件回收率不低于 95%，再利用率不低于 85%。另外，相关环保要求规定用于汽车的非金属材料，须具备明确的材料标识。此外，与其他发达国家相比，汽车空调制冷剂年泄漏量、发动机废气中有害气体与温室气体含量等限值的标准都要更加严格。

上述欧盟对汽车产品生产、销售的整车型认证制度，不仅规定了汽车及零部件产品基本性能，还对其拆解技术、废旧部件回收以及循环利用技术有明确的要求。欧盟还计划在未来数年里提高对环保的要求。鉴于 WVTA 的认证周期、费用和难度，它对中国汽车进入欧洲市场有严重阻碍。

3. 环保管理体系认证

对于我国汽车产品来讲，进入欧盟市场，取得该国或国际通行的管理体系和产品认证是前提条件，例如国际通行的 ISO14001 认证，ISO/TS16949 认证。
(四) 美国
1. 技术性贸易壁垒
美国一方面积极倡导贸易自由化，另一方面为维护自身利益，在技术标准、法规等方面具有较强的保护主义色彩。对外来汽车产品，美国的技术性贸易壁垒主要包括安全与环保的有关规定、排放标准和产品检测认证等。美国对汽车除安全性能外，还特别看重环保，美国联邦机动车安全标准（FMVSS）、联邦机动车环境保护法规（EPA法规）、联邦汽车燃料经济性标准法、汽车排放标准等构成美国市场上外来汽车准入的基本技术壁垒。此外，为了保护国内汽车工业，在《空气净化法》和《防污染法》中明确规定，所有进口汽车必须安装防污装置，并制定了十分苛刻的技术标准。

2012 年 8 月，奥巴马政府正式出台 2025 年企业平均燃效 CAFÉ （Corporate Average Fuel Economy）法则，按照新法规，美国市场上各车企 2017 年至 2025 年款新车的燃油经济性平均值应达到 54.5 英里/加仑，约合百公里 4.3 升油耗，比以前车辆水平几乎提高一倍。

美国国家交通公路安全管理局（NHTSA）从 2008 年开始提出草案，要求到 2014 年所有新车都配备后视摄像机，以减少倒车导致儿童伤亡的事故。添加后视摄像机将使新车成本提高 58—203 美元。

加利福尼亚州一直以实施最激进的排放法规著称。2012 年加州空气资源委员会通过新的《加州新清洁汽车条例》，旨在严格控制汽车和柴油车的排放，节约汽车油耗，减少雾霾和温室气体排放，支持电池车、插入式混合动力车和氢燃料电池车等零排放技术的发展。文件规定，加州 2017 年到 2025 年间生产的轿车和轻型卡车的排放标准，将每公里温室气体排放量降至 103.75 克，与 2016 年的标准相比下降 34%。

2. 知识产权壁垒
随着国际汽车产业竞争形势的加剧，美国更加注意保护本国汽车工业和贸易利益，技术性贸易壁垒越来越多地扩展到知识产权领域，以专利和标准组合形成的技术性贸易壁垒更加频繁地应用到汽车产业的保护当中。

2005 年美国通用汽车公司向奇瑞在美国的经销商梦幻汽车（VVLLC）发出律师函，称奇瑞的英文商标（Chery）与雪佛兰（Chevrolet）的昵称 Chevy 接近，通用反对奇瑞用 Chery 在美国进行注册、销售、代理以及所有有关商业活动。最终，通用在美国对奇瑞提起的知识产权侵权起诉胜诉，奇瑞在美国的经销商不得不放弃将奇瑞汽车出口到美国销售的计划。
3. 认证壁垒

尽管美国政府并没有明文规定限制外国汽车进口，但现实中小存在一些做法和措施，实际上起到了保护美国本土汽车、限制外来汽车的作用。其中之一，就是美国汽车的认证制度。根据美国规定，所有将机动车辆及零部件产品出口到美国的生产商，都必须保证其产品符合 DOT 要求的实验室检测程序。而目前我国国内没有美国 DOT 认可的签约实验室，因此对于我国那些想进入美国汽车市场、必须进行实验室检测的汽车制造商来说，送交国外实验室检测，其检测时间和成本必然很高。因此，我国政府或汽车行业可以考虑与美国实现汽车认证合作，选取几家中国国内的汽车检测机构作为 DOT 认可的实验室，从而实现检测报告可以由国内报告转换，大大节约我国汽车制造商的成本与时间。